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Abstract Simultaneous monitoring of process mean and
variability by a single control chart has been increasingly
taken into consideration in recent years. However, the effect
of imprecise measurements on the performances of some
existing control schemes has been neglected. In this paper,
the effect of measurement errors with linearly increas-
ing variance on the detecting and diagnosing capability of
the MAX-EWMAMS control chart is first investigated in
Phase II monitoring. The results obtained using simulation
studies show that the measurement errors affect the two
performances of the chart, significantly. Then, two reme-
dial measures including the ranked set sampling approach
and using a larger sample size are proposed. The simulation
results confirm that both the remedial measures compensate
for the effect of measurement errors, adequately. A real-data
example is also given to illustrate the effect of measurement
errors on the rate of false alarm.
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1 Introduction

In the past decades, the application of control charts has
beenwidespread inmanufacturing and service sectors. Using
control charts leads to improving the quality of products
and/or services by distinguishing between common and
assignable causes of variations. Most studies in statisti-
cal process monitoring are provided under the assumption
that the measurements are precise. However, exact measure-
ment is a rare phenomenon in any environment where the
human involvement is evident [1]. In other words, errors
due to instruments and operators commonly exist in practice
even with highly sophisticated advanced measuring instru-
ments. The measurement errors may affect the performance
of control charts in two ways: (1) it can adversely affect
the performance of control charts in detecting out-of-control
states, and (2) it can increase the rate of false alarms. Khur-
shid and Chakraborty [2] stated that the sources of variations
might be due to the inherent variability in the process and the
errors due to the measurement instruments.

Recently the effect of measurement errors on the perfor-
mances of various schemes proposed to monitor different
processes has been addressed by several researchers such
as [3–14]. For detailed information concerning the effect of
measurement errors on the performance of control charts
refers to the review paper presented by Maleki et al. [15].
Most of the above-mentioned researchers focused on evalu-
ating the effect of measurement errors on the performance of
a scheme to monitor either the process mean or its variabil-
ity. Nonetheless, simultaneous monitoring of process mean
and variability has received a great deal of attention in recent
years due to twomain reasons; (1) both themean and variabil-
ity may shift at the same time, and (2) a change in the process
variability can affect the control limits of the charts for mon-
itoring the process mean. For more information concerning
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the simultaneous monitoring schemes, interested readers are
referred to [16–22]. Moreover, McCracken and Chakraborti
[16] provided a review of simultaneous monitoring proce-
dures available in the literature until 2011.

To the best of the authors’ knowledge, research conducted
in the context of the simultaneous monitoring of process
mean and variability has neglected the effect of imprecise
data obtained under measuring systems, due to either human
fault or equipment error. In addition, most studies in mea-
surement errors have assumed a constant variance for the
measurement error term. In some practical problems, how-
ever, the variance of the measurement error term depends on
the mean level of the process. It has been proven in the lit-
erature that the capability of the control charts in detecting
out-of-control situations is directly affected by themagnitude
of the process variability [2]. However, only a few remedial
measures have been recommended in the literature to com-
pensate for the effect of measurement errors on detecting
capability of control charts. Therefore, proposing some novel
remedial approaches to cover such effects is inevitable.

In this paper, the effect of measurement errors on
the performance of one of the most common approaches
in the literature for simultaneous monitoring of the pro-
cess mean and variability, called the maximum exponen-
tially weighted moving average and mean-squared deviation
(MAX-EWMAMS) control chart, is investigated. This effect
is studied for measurement errors with linearly increasing
variance. In other words, the assumption of constant variance
for themeasurement error term is relaxed,where it is assumed
that this variance linearly relates to the process mean level.
Through a numerical example, we will first show that the
presence of measurement errors can affect the detecting and
diagnosing capability of the MAX-EWMAMS control chart
adversely. Then, we extend and utilize two remedial mea-
sures to compensate for the effect of measurement errors.
Through an illustrative numerical example, we will show
that the remedial approaches including a ranked set sam-
pling (RSS) approach and using a larger sample size reduce
the effect of measurement errors. We assume that the model
parameters are known based on historical data, i.e., the inves-
tigation and the proposals are designed for a Phase II analysis.

To structure the literature review of the process monitor-
ing and to demonstrate differences between this study and
other works, a systematic state-of-the-art survey is depicted
in Table 1 in terms of the type of error variance for the mea-
surement error term, the parameters (mean, variance or both)
that are monitored, the remedial approach, and the diagnosis
procedure. It is concluded from Table 1 that (1) most of the
studies have considered constant variances for measurement
errors and ignore joint monitoring of process mean and vari-
ance, (2) only a few papers are associated with diagnosing
the source of changes, (3) most of the papers have not intro-

duced any remedial approach to compensate for the effect of
measurement errors on detecting capability of control charts.

The rest of this paper is organized as follows: In Sect. 2, the
problem is briefly defined and the notations are introduced.
The MAX-EWMAMS control chart is discussed in Sect. 3.
Section 4 contains an extension of theMAX-EWMAMScon-
trol chart using a model with an additive covariate error
term and discusses the diagnosing procedure. The effect
of measurement errors with linearly increasing variance on
the performance of the MAX-EWMAMS control chart is
assessed by simulation studies in Sect. 5. A sensitivity anal-
ysis is also performed in Sect. 5 to evaluate the detecting
and diagnosing capability of the MAX-EWMAMS control
chart in the presence of measurement errors. In Sect. 6, the
ranked set sampling (RSS) approach is extended to compen-
sate for the effect of measurement errors on the performance
of the MAX-EWMAMS control chart. In Sect. 7, a real-life
example is given to illustrate the effect of gauge measure-
ment errors on the rate of false alarm. Finally, the findings
are concluded in Sect. 8, where recommendations for future
study are provided.

2 Problem Definition

Consider a process of interest with the in-control mean and
variance denoted by μ0 and σ 2

0 , respectively. It is assumed
that the observations are independent and follow N

(
μ0, σ

2
0

)
.

Observations are gathered in a rational subgroup of size n
where the j th observation at the t th sampling point is denoted
by Xt j . In other words, Xt = [Xt1, Xt2, ..., Xtn] denotes the
vector of t th random sample which contains the true obser-
vations of the quality characteristic under investigation. We
are to design a MAX-EWMAMS scheme in the presence of
measurement errors in order to monitor the mean and the
variance of the process, simultaneously. The notations used
to formulate the problem are present in Table 2.

3 The MAX-EWMAMS Control Chart

In this section, the MAX-EWMAMS scheme for simul-
taneous monitoring of the process mean and variability,
which plots only one statistic at a time, is briefly explained.
This scheme utilizes an exponential weighted moving aver-
age (EWMA) and an exponential weighted mean square
(EWMS) statistics to monitor the mean and the variance of a
process, simultaneously. The EWMAstatistic formonitoring
the process mean at t th sample with the smoothing parameter
λ selected in the range [0,1] is given by

Zt = λX̄t + (1 − λ)Zt−1, (1)

123



Arab J Sci Eng

Ta
bl
e
1

C
om

pa
ri
ng

ex
is
tin

g
st
ud
ie
s
w
ith

th
e
pr
op
os
ed

m
et
ho
do
lo
gy

R
es
ea
rc
h

E
rr
or

va
ri
an
ce

R
em

ed
ia
la
pp
ro
ac
h

M
on
ito

ri
ng

D
ia
gn
os
is

C
on
tr
ol

ch
ar
t

C
on

st
an
t

L
in
ea
rl
y

in
cr
ea
si
ng

M
ea
n

or
va
ri
ab
ili
ty

M
ea
n

an
d

va
ri
ab
ili
ty

Y
an
g
an
d
Y
an
g
[3
]

�
�

Sh
ew

ha
rt
ch
ar
t/c

au
se

se
le
ct
in
g
ch
ar
t

Y
an
g
et
al
.[
4]

�
�

E
W
M
A
ch
ar
t/c

au
se

se
le
ct
in
g
ch
ar
t

M
ar
av
el
ak
is
[5
]

�
�

C
U
SU

M
ch
ar
t

M
em

ar
an
d
N
ia
ki

[2
3]

�
�

M
A
X
-E
W
M
A
M
S
ch
ar
t

M
oa
m
en
ie
ta
l.
[7
]

�
�

X̃
−

R̃
fu
zz
y
ch
ar
t

M
ar
av
el
ak
is
[8
]

�
�

�
�

C
U
SU

M
ch
ar
t

M
cC

ra
ck
en

an
d
C
ha
kr
ab
or
ti
[1
6]

�
�

M
ax

ch
ar
t/D

is
ta
nc
e
ch
ar
t

H
u
et
al
.[
9]

�
�

�
Sy

nt
he
tic

X̄
ch
ar
t

K
hu
rs
hi
d
an
d
C
ha
kr
ab
or
ty

[2
]

�
�

ch
ar
tf
or

st
an
da
rd
iz
ed

ze
ro

tr
un

ca
te
d
bi
no

m
ia
l

va
ri
ab
le
s

R
ia
z
[1
]

�
�

�
Sh

ew
ha
rt
ch
ar
ts

C
ho
w
dh
ur
y
et
al
.[
17

]
�

�
Sh

ew
ha
rt
-C
uc
co
ni

(S
C
)
ch
ar
t

Pa
rk

[1
8]

�
Se

m
i-
ci
rc
le
ch
ar
t/M

ax
ch
ar
t/G

L
R
ch
ar
t/F

is
he
r

ch
ar
t/U

I
ch
ar
t/L

ip
ta
k
ch
ar
t

H
aq

et
al
.[
10

]
�

�
�

�
E
W
M
A
ch
ar
t

H
u
et
al
.[
11

]
�

�
�

�
ad
ap
tiv

e
X̄
ch
ar
t

N
oo
ro
ss
an
a
an
d
Z
er
eh
sa
z
[1
2]

�
�

E
W
M
A
-3

ch
ar
t/
E
W
M
A
/R

ch
ar
t/T

2
ch
ar
t

C
ho
w
dh
ur
y
et
al
.[
19

]
�

cu
m
ul
at
iv
e
su
m
-L
ep
ag
e
(C

L
)
ch
ar
t

A
fo
la
bi

et
al
.[
20

]
�

L
ep
ag
e-
ty
pe

ch
an
ge
-p
oi
nt

(L
C
P)

ch
ar
t

Pr
aj
ap
at
ia
nd

Si
ng
h
[2
1]

�
m
od
ifi
ed

X̄
/
R
ch
ar
t

M
al
ek
ia
nd

A
m
ir
i[
22

]
�

�
ar
tifi

ci
al
ne
ur
al
ne
tw
or
k

A
bb
as
i[
13

]
�

�
�

E
W
M
A
ch
ar
t

Y
eo
ng

et
al
.[
14

]
�

�
�

co
ef
fic
ie
nt

of
va
ri
at
io
n
ch
ar
t

T
hi
s
pa
pe
r

�
�

�
�

�
M
A
X
-E
W
M
A
M
S
ch
ar
t

123



Arab J Sci Eng

Table 2 Notation and
definitions

Notation Description

t Index of a sample

j Index of an observation

μX Mean of the quality characteristic under investigation

μ0 In-control mean of the quality characteristic under investigation

σ 2
X Variance of the quality characteristic under investigation

λ Smoothing parameter of the control chart

d f Degree of freedom of a chi-square distribution

Xt j The actual value of j th observation in t th sample

X̄t The sample mean in t th sample

S2t The EWMS statistic for t th sample

Zt The EWMA statistic based on t th sample

Ut The standardized EWMA statistic for t th sample

Vt The standardized EWMS statistic based on t th sample

Mt The joint monitoring statistic for t th sample

A The intercept parameter of the model that includes the covariate term

B The slope parameter of the model involving the covariate term

C The intercept parameter of the line modeling the error variance

D The slope parameter of the line modeling the error variance

Yt j The measured value of j th observation in t th sample

Ȳt The sample mean of Y ’s in t th sample

S′2
t The EWMS statistic corresponding to Y ’s

σ 2
y The variance of the measured quality characteristic under covariate model

Z ′
t The EWMA statistic corresponding to Y ’s

U ′
t The standardized EWMA statistic corresponding to Y ’s

V ′ The standardized EWMS statistic corresponding to Y ’s

M ′
t The joint monitoring statistic corresponding to Y ’s

where X̄t is the sample mean at time t and Z0 = μ0. The
EWMS statistic for monitoring the process variability at t th
sample with the smoothing parameter λ is obtained based on
Eq. 2.

S2t = (1 − λ)S2t−1 + λ

n∑

j=1

(
Xt j − μ0

)2

n
, (2)

where S20 = σ 2
0 . It can be statistically checked that the

expected value and the variance of S2t are obtained according
to Eqs. 3 and 4, respectively:

E[S2t ] = σ 2
0 , (3)

Var[S2t ] = 2λ

n(2 − λ)

[
1 − (1 − λ)2t

]
σ 4
0 . (4)

When the observations are independent and Normally dis-
tributed and t → ∞, we have:

S2t /σ
2
0 → χ2

d f

d f
; d f = n(2 − λ)/λ. (5)

Obviously Zt ∼ N (μ0,
λ

n(2−λ)

[
1 − (1 − λ)2tσ 2

0

]
.Then, the

Ut -statistic with the standard Normal distribution used to
monitor the process mean is turned to be:

Ut = (Zt − μ0)√
λ

n(2−λ)

[
1 − (1 − λ)2tσ 2

0

] . (6)

For monitoring the process variability, the Vt -statistic is used
as follows:

Vt = φ−1

[

Pr

(

χ2
d f ≤ d f × S2t

σ 2
0

)]

. (7)

Note that according to Ostadsharif Memar and Niaki [23],
Vt approximately follows the standard Normal distribution.
Finally, the MAX-EWMAMS statistic at the sample point
t; t = 1, 2, ... is defined as follows:

Mt = max{|Ut |, |Vt |}. (8)
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Note that the MAX-EWMAMS control chart only has an
upper control limit (UCL) because Mt ≥ 0.

4 Modification of the MAX-EWMAMS Scheme in
the Presence of Measurement Error

The additive covariate model that expresses the measured
value of j th observation in t th sample is shown in Eq. (9)
[24]:

Yt j = A + BXt j + εt j , (9)

where A and B are intercept and slope constants of a model
involving a covariate term and εt j is the random error term
which is independent of Xt j . Most researchers assumed that
ε′s follow Normal distributions with mean 0 and constant
variances. However, in some applications, the error variance
is not constant and may depend on the process level. In this
paper, it is assumed that the variance of the error termchanges
linearly with the process mean, i.e., ε ∼ N (0,C + DμX ).
Consequently, Y ′s are Normally distributed with the follow-
ing parameters:

Yt j ∼ N (A + BμX , B2σ 2
X + C + DμX ). (10)

The EWMA statistic for monitoring the process mean in
the presence of the measurement errors with linearly increas-
ing variance is:

Z ′
t = λȲt + (1 − λ)Z ′

t−1, (11)

where Z ′0 = A+ Bμ0 and Ȳt =
n∑

j=1
Yt j/n. It can be shown

that Z ′
t follows a Normal distribution as:

Z ′
t ∼ N

(
A + Bμ0,

(
λ

n(2 − λ)

)
[1 − (1 − λ)2t ]

×(B2σ 2
0 + C + Dμ0)

)
. (12)

Then, in the presence of the measurement errors, the stan-
dardized statistic for monitoring the process mean is:

U ′
t = Z ′

t − (A + Bμ0)√
λ

(2−λ)

[
1 − (1 − λ)2t

] × B2σ 2
0 +C+Dμ0

n

. (13)

For monitoring process variability when the measurements
are imprecise, Eq. (2) is rewritten as:

S′2
t = (1 − λ)S′2

t−1 + λ

n∑

j=1

(
Yt j − (A + Bμ0)

)2

n
. (14)

Then, the chart statistic for monitoring process variability
with approximately standard Normal distribution is:

V ′
t = φ−1

[

Pr

(

χ2
d f ≤ d f × S′2

t

σ 2
Y

)]

. (15)

Since both U ′
t and V ′

t follow the standard Normal distribu-
tion, the chart statistic for simultaneous monitoring of the
process mean and variability in the presence of imprecise
measurements will be obtained as:

M ′
t = max{|U ′

t |, |V ′
t |}. (16)

Since Eq. (16) guarantees thatM ′
t ≥ 0, an upper control limit

is only required to monitor the process. The upper control
limit is set such that the in-control average run length (ARL0)
becomes a predetermined value.

Themost important issue after receiving an out-of-control
signal, i.e.,M ′

t > UCL, is to diagnose the source of the signal.
In this regard, the following rules are utilized:

1. If |U ′
t | > UCL and |V ′

t | ≤ UCL, the process mean is
responsible for the signal.

2. If |V ′
t | > UCL and |U ′

t | ≤ UCL, the process variability
is responsible for the signal.

3. If |U ′
t | > UCL and |V ′

t | > UCL, both the mean and the
variability are responsible for the signal.

Assume that a given simultaneous shift (μX = μ0 +
δσ0, σX = ψσ0) leads to an out-of-control signal at t th
sample. In such situation, the probability that both |U ′

t | or
|V ′

t | statistics jointly exceed the UCL (P(U ′
t > UCL, V ′

t >

UCL|μX , σX )) is less than the probability that only one
of them exceeds the UCL,

(
P(|U ′

t | > UCL, |V ′
t | ≤ UCL|

μX , σX ) + P(|V ′
t | > UCL, |U ′

t | ≤ UCL|μX , σX )
)
. There-

fore, the performance of the MAX-EWMAMS control chart
in diagnosing the source of the signal under simultaneous
shifts will be less compared to the ones obtained in diagnos-
ing the mean or the variance shifts, separately.

5 Effect of the Measurement Errors

In this section, the effect of the measurement error with
a linearly increasing variance on the performance of the
MAX-EWMAMS control chart is evaluated through 10,000
simulation replicates. We assume that X ∼ N (5, 1) with
A = 0 and B = 1 in the additive covariate error model.
In all simulation experiments, the UCL value of the MAX-
EWMAMS control chart is set such that ARL0 ≈ 200. The
step shifts of the process mean and variance are denoted by
(μ0 + δσ0) and (ψσ0), respectively. Table 3 contains ARL
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Table 3 ARLs when n = 10, λ = 0.2

UCL 2.8710 2.8833 2.8844 2.8837 2.889
(δ, ψ) (C,D)

(0,0) (0,1) (0,2) (1,1) (3,1)

(0,1) 199.992 199.321 199.303 200.817 199.867

(0.25,1) 13.320 61.600 85.477 68.563 84.584

(0.5,1) 3.987 18.628 29.841 21.600 26.442

(0.75,1) 2.078 8.795 14.520 10.065 13.102

(1,1) 1.440 5.377 8.592 6.198 7.851

(1.25,1) 1.143 3.755 5.882 4.247 5.269

(1.5,1) 1.031 2.930 4.388 3.185 3.925

(0,0.25) 3.000 83.985 196.448 106.009 151.386

(0,0.5) 3.614 125.013 198.780 135.181 192.382

(0,1.1) 33.433 146.598 184.205 161.702 187.585

(0,1.2) 10.927 109.810 160.490 115.676 137.622

(0,1.3) 5.884 75.076 125.234 90.020 111.515

(0.25,0.25) 10.804 66.645 108.254 79.417 98.372

(0.25,0.5) 14.043 74.822 110.32 85.582 101.415

(0.25,1.1) 10.597 50.229 70.889 61.392 73.423

(0.25,1.2) 7.306 41.153 61.781 51.304 62.439

(0.5,0.25) 3.991 20.907 35.831 24.218 31.826

(0.5,0.5) 4.005 21.293 36.716 24.496 32.717

(0.5,1.1) 3.966 17.339 26.909 21.253 27.771

(0.5,1.2) 3.545 16.884 25.694 19.610 24.994

(0.75,0.25) 2.063 9.285 15.750 10.820 13.385

(0.75,0.5) 2.091 9.626 16.140 11.092 13.770

(0.75,1.1) 2.138 8.303 13.721 10.141 12.883

(0.75,1.2) 2.033 8.265 12.976 9.627 12.834

(1,0.25) 1.390 5.687 9.132 6.465 8.015

(1,0.5) 1.403 5.753 9.251 5.522 7.722

(1,1.1) 1.471 5.327 8.449 6.072 7.581

(1,1.2) 1.470 5.303 8.238 5.925 7.556

(1.25,0.25) 1.091 3.852 6.390 4.422 5.280

(1.25,0.5) 1.115 3.880 6.427 4.554 5.511

(1.25,1.1) 1.174 3.610 5.729 4.310 5.317

(1.25,1.2) 1.172 3.650 5.521 4.263 5.209

values when n = 10 and λ = 0.2 under different values
of (C, D). The ARLs are presented at different values of δ

and ψ . Note that the process mean is in-control if δ = 0
while the process variability is in-control if ψ = 1. One
can see from Table 3 that measurement errors with a lin-
early increasing variance adversely affect the performance of
the MAX-EWMAMS control chart in detecting all process
changes. In addition, as both parameters C and D increase,
the ARLs under mean shifts, variance shifts and simultane-
ous shifts in both tend to increase.

The performance of the MAX-EWMAMS control chart
to diagnose the source of the signal under different values of
(C, D) is evaluated in Table 4. In Table 4, n = 10, λ = 0.2

Table 4 Correct diagnosis percentage when n = 10, λ = 0.2

(δ, ψ) (C,D)

(0,0) (0,1) (0,2) (1,1) (3,1)

(0.25,1) 95.8 74.7 66.0 74.1 73.1

(0.5,1) 97.5 85 78.3 88.4 86.6

(0.75,1) 96.2 86.9 81.8 87.4 91.1

(1,1) 91.9 85.2 81.3 87.9 91.2

(1.25,1) 80.1 85.9 81.3 86.3 91.3

(0,0.25) 100 90.1 68.2 88 75.9

(0,0.5) 100 84.1 60.1 75.7 68.2

(0,1.1) 82.7 55.4 52.4 53.3 52.7

(0,1.2) 90.2 62.3 57.1 64.1 57.6

(0,1.3) 91.0 72.1 60.5 69.7 63.6

(0.5,0.25) 51 1 0.8 0.7 0.9

(0.5,0.5) 51.7 1.6 1.5 0.6 1.1

(0.5,1.25) 24.6 7.2 4.1 5.0 4.2

(0.5,1.5) 32.7 11.1 5.5 6.3 6.0

(0.5,2) 33.1 11.5 7.3 10.9 7.9

(0.75,1.25) 29.7 9.3 6.3 7.9 6.1

(0.75,1.5) 46.9 12.4 10.5 9.7 7.9

(0.75,2) 47.4 16.2 12.1 15.6 12.0

and the results are obtained in terms of the correct diag-
nosis percentage (CDP) criterion. The results in Table 4
show that increasing both parameters C and D results in
increased measurement errors affecting CDPs. It is seen that
the diagnosing performance of theMAX-EWMAMSscheme
in detecting mean shifts and variance shifts is satisfactory.
However, for simultaneous shifts, theMAX-EWMAMScon-
trol chart under covariatemodel does not accurately diagnose
the source of the signal.

In the rest of this section, a sensitivity analysiswith respect
to the sample size parameter whenC = 1, D = 1, λ = 0.2 is
performed. The ARL values under mean and variance shifts
for different values of the parameter n are displayed inTable 5
while for joint shifts the ARL values are depicted in Fig. 1.
Both Table 5 and Fig. 1 indicate that as the sample size
increases, the effect ofmeasurement error on the capability of
the MAX-EWMAMS control chart in detecting mean shifts,
variance shifts, and joint shifts decreases. In addition, Table 6
confirms that when the parameter n increases, the diagnosing
capability of the MAX-EWMAMS scheme under measure-
ment errorwith linearly increasingvariance is improved.This
suggests using a larger sample size to compensate for the
effect of measurement errors on detecting and diagnosing
capability of the MAX-EWMAMS control chart effectively.
It is worth mentioning that, although increasing the sample
size improves the statistical features of theMAX-EWMAMS
control chart under measurement errors, it is associated with
a higher sampling cost.
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6 A Rank Set Sampling Approach

One of most efficient methods in decreasing the effect of
measurement errors on the performance of control charts is
the rank set sampling (RSS)method. The effectiveness of this
method has been shown in some studies such as Al-Nasser
and Al-Rawwash [25]. In addition, Muttlak and Al-Sabah
[26] developed two modified versions of the RSS method,
namely median ranked set sampling (MRSS) and extreme
ranked set sampling (ERSS). They indicated better perfor-
mance of MRSS- and ERSS-based charts compared to the
usual control charts based on simple random sampling (SRS)
approach in terms of the ARL criterion.

Table 5 ARL comparison between different sample sizes under mean
and variance shifts when C = 1, D = 1, λ = 0.2

UCL 2.8837 2.8850 2.8854 2.8858
(δ, ψ) n

10 12 15 20

(0,1) 200.817 199.158 200.261 199.888

(0.25,1) 68.563 60.898 49.85 41.757

(0.5,1) 21.600 17.81 14.867 11.474

(0.75,1) 10.065 8.486 7.16 5.573

(1,1) 6.198 5.288 4.570 3.534

(1.25,1) 4.247 3.818 3.079 2.467

(1.5,1) 3.185 2.782 2.390 1.988

(0,0.25) 106.009 92.529 72.784 54.615

(0,0.5) 135.181 129.534 110.401 82.274

(0,1.1) 161.702 158.584 154.654 152.712

(0,1.2) 115.676 113.583 112.997 101.855

(0,1.3) 90.020 80.903 67.892 62.893

In this section, a remedial approach based on the RSS
approach is proposed to lessen the effect of the measurement
errorswith linearly increasingvariance on the performance of
theMAX-EWMAMS control chart. To do this, the following
steps are first taken:

1. Select n random samples of size n units from the process.
2. Rank the units within each sample with respect to the

measured quality characteristic.

Table 6 Correct diagnosis percentages for different values of n when
C = 1, D = 1, λ = 0.2

(δ, ψ) n

10 12 15 20

(0.25,1) 74.1 78.2 81 85.3

(0.5,1) 88.4 89.5 90.5 91.5

(0.75,1) 87.4 93 93 94.5

(1,1) 87.9 90.6 91.1 91.5

(1.25,1) 86.3 88.7 90.5 91.9

(0,0.25) 88 88.2 89.8 93

(0,0.5) 75.7 81.2 83.3 87.4

(0,1.1) 53.3 56.1 57.1 57.2

(0,1.2) 64.1 62.6 64.3 67

(0,1.3) 69.7 71.1 71.7 77.7

(0.5,0.25) 0.7 0.7 0.7 0.7

(0.5,0.5) 0.6 0.6 0.6 0.6

(0.5,1.25) 5.0 5.3 5.6 6.5

(0.5,1.5) 6.3 7.4 8 8.7

(0.5,2) 10.9 9.5 10.6 12.1

(0.75,1.25) 7.9 8.2 9 9.6

(0.75,1.5) 9.7 11.7 13.5 14.3

(0.75,2) 15.6 17 17.7 19.8

(0.25,1.1) (0.25,1.2) (0.25,1.3) (0.5,1.1)  (0.5,1.2) (0.5,1.3) (0.75,1.1)  (0.75,1.2) (0.75,1.3)

10

20

30

40

50

60

join shift

A
R

L

n=10
n=12
n=15
n=20

Fig. 1 ARL comparison between different values of n under simultaneous shifts when C = 1, D = 1, λ = 0.2
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3. The smallest ranked measured quality characteristic is
selected from the first set. Similarly, the second smallest
ranked quality characteristic is selected from the second
set. The procedure continues and the largest ranked qual-
ity characteristic is selected from the nth set

4. This completes one cycle of a ranked set sample of size
n.

Let {Y11,Y12, ...,Y1n} ; {Y21,Y22, ...,Y2n} ; ...; {
Yn1,

Yn2, ...,Ynn
}
be n independent simple random samples from

the measured quality characteristic with probability density
function f (y)withfinitemeanμY andvarianceσ 2

Y . LetYi(i :n)

denotes the i th ordered statistic from the i th sample of size n.
The ranked set sample of size n with respect to the measured
units at time t is expressed as follows:

YRSS
t = {

Yt,1(1:n),Yt,2(2:n), ...,Yt,n(n:n)

}
(17)

The t th standardized statistic for monitoring the process
mean is rewritten according to Eq. (17):

U ′′
t = Z ′′

t − (A + Bμ0)√
λ

(2−λ)

[
1 − (1 − λ)2t

] × B2σ 2
0 +C+Dμ0

n

, (18)

where:

Z ′′
t = λȲRSS

t + (1 − λ)Z ′′
t−1. (19)

In Eq. (19), ȲRSS
t =

n∑

j=1
Yt, j ( j :n)

/n and Z ′′
0 = A + Bμ0.

Then, the modified chart statistic for monitoring the pro-
cess variability is:

V ′′
t = φ−1

[

Pr

(

χ2
d f ≤ d f × S′′2

t

σ 2
Y

)]

, (20)

where:

S′′2
t = (1 − λ)S′′2

t−1 + λ

n∑

j=1

(
Yt, j ( j :n)

− (A + Bμ0)
)2

n
. (21)

Finally, the modified statistic for simultaneous monitoring
of the mean and the variance of the process under linearly
increasing variance of the error term is given by:

M ′′
t = max{|U ′′

t |, |V ′′
t |}. (22)

The flowchart of the modified MAX-EWMAMS control
chart under measurement errors that uses the RSS approach
is illustrated in Fig. 2.

Now, to illustrate the effectiveness of the RSS approach in
reducing the effect ofmeasurement errors on the performance

Taking n samples
of size n

Taking n samples 
of size n 

Calculating the statistic
for monitoring the 
process variability

Calculating the statistic 
for monitoring the 
process variability

Calculating the statistic
for monitoring the 

process mean

Calculating the statistic 
for monitoring the 

process mean

Calculating the statistic
for simultaneous 

monitoring purpose

Calculating the statistic 
for simultaneous 

monitoring purpose

Constructing ranked set
sample containing

measured quantities

Constructing ranked set 
sample containing 

measured quantities

?Is the process in control?

Diagnosing 
source of signal

Diagnosing 
source of signal

Implementing corrective 
action(s) based on 
diagnosed factor

Implementing corrective 
action(s) based on 
diagnosed factor

StartStart

StopStop

Yes

No

Fig. 2 Flowchart of the proposed method under the RSS approach

of theMAX-EWMAMS control chart, the ARL values of the
RSS-Max-EWMAMS chart under measurement errors are
summarized in Table 7. The results in this table indicate that
in almost all shifts, the RSS approach improves the detecting
capability of the MAX-EWMAMS control chart. Similar to
the first remedial approach, although RSS improves the sta-
tistical capability of the MAX-EWMAMS scheme, it results
in a higher sampling cost. Consequently, in processes with
negligible sampling costs both remedial approaches are rec-
ommended for sampling strategies.

In addition, the ARLs of the proposed control chart under
simple random sampling (SRS) and ranked set sampling
(RSS) schemes under n = 10, λ = 0.2,C = 1 and D = 1
are present in Fig. 3. It can be easily seen from this figure
that when measurement errors exist, using the RSS approach
leads to a better capability of the MAX-EWMAMS control
chart in comparison with the SRS.

7 Real-Life Example

In this section, a real-world example provided by Mont-
gomery [27] is used to demonstrate the effect ofmeasurement
errors with linearly increasing variance on joint monitoring
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Table 7 ARLs when n = 10
and λ = 0.2 under RSS
approach

UCL 1.9886 1.9889 1.9894 1.9926 1.9932
(δ, ψ) (C,D)

(0,0) (0.1) (0,2) (1,1) (3,1)

(0,1) 200.19 199.291 199.729 200.220 200.4830

(0.25,1) 7.648 68.013 87.115 78.3720 100.901

(0.5,1) 2.21 11.095 21.644 13.0760 19.33

(0.75,1) 1.202 4.842 8.241 5.6370 7.35

(1,1) 1.007 2.992 4.767 3.349 4.208

(1.25,1) 1.000 2.096 3.355 2.333 2.956

(0,0.25) 2.000 37.015 104.990 49.421 74.365

(0,0.5) 2.551 55.345 134.726 75.140 102.830

(0,1.1) 18.33 130.545 162.998 144.9170 162.012

(0,1.2) 6.254 73.729 129.951 81.1440 108.527

(0,1.3) 3.694 43.721 87.907 53.6500 75.486

(0.25,0.25) 2.000 57.026 162.803 80.078 108.526

(0.25,0.5) 2.867 76.732 179.923 97.904 134.361

(0.25,1.1) 6.328 45.515 70.451 57.9400 78.262

(0.25,1.2) 4.474 33.321 55.938 39.6080 60.188

(0.5,0.25) 2.018 12.410 27.642 15.473 22.522

(0.5,0.5) 2.110 12.513 28.637 15.923 23.252

(0.5,1.1) 2.154 10.313 19.945 12.7900 18.012

(0.5,1.2) 2.039 9.531 17.436 11.7940 16.519

(0.75,0.25) 1.000 5.031 9.170 5.886 7.658

(0.75,0.5) 1.051 5.060 9.236 5.968 7.736

(0.75,1.1) 1.202 4.761 8.343 5.5010 7.036

(0.75,1.2) 1.245 4.669 7.633 5.4130 6.999

(1,0.25) 1.000 2.91 5.069 3.410 4.211

(1,0.5) 1.000 3.001 5.077 3.494 4.277

(1,1.1) 1.012 2.933 4.837 3.349 4.133

(1,1.2) 1.009 2.921 4.665 3.271 4.029

(1.25,0.25) 1.000 2.062 3.344 2.413 2.878

(1.25,0.5) 1.000 2.092 3.413 2.414 2.924

(1.25,1.1) 1.001 2.128 3.305 2.367 2.878

(1.25,1.2) 1.000 2.094 3.207 2.323 2.872

of process mean and variability. In this dataset, 25 subgroups
containing five observations, as given in the second to sixth
columns in Table 8, were obtained in which the inside diam-
eter of forged automobile engine piston rings in millimeters
(mm) is measured. This dataset is also used by Ghashghaei et
al. [28]. They used three normality tests includingAnderson–
Darling, Rayan–Joiner and Kolmogorov–Smirnov, to find
out that the dataset follows a normal distribution with the
mean and the standard deviation of 74 and 0.01, respectively.
Here through simulation experiments, we set the UCL value
equal to 2.8728 to have ARL0 ≈ 200. First, the chart statis-
tic corresponding to each sample using error-free data are
calculated and plotted. For this purpose, firstly the EWMA
and EWMS statistics are calculated by Eqs. (1) and (2) in

which n = 5, Z0 = 74, S20 = 0.01 and λ = 0.2. Then,
by substituting Zt and S2t in Eqs. (6) and (7), Ut and Vt
statistics are obtained. Finally, the maximum of the absolute
values of Ut and Vt is considered as the MAX-EWMAMS
statistic at sample point t . In the following, the chart statis-
tic under measurement errors are calculated by selecting
A = 0, B = 1,C = 1, D = 1. It is similar to the error-
free data case with this difference that Zt , S2t ,Ut , Vt and Mt

are substituted by Z ′, S′2
t ,U ′, V ′ and M ′ according to Eqs.

(11–16). Figure 4 depicts the statistics in both scenarios, i.e.,
the error-free and under measurement errors cases. As seen,
there is not any false alarm when the measurements are pre-
cise. However, a false alarm is received at the tenth sample
when the measurements are not error-free.
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Fig. 3 ARL comparisons between RSS and SRS under simultaneous shifts when C = 1, D = 1, λ = 0.2

Table 8 Statistic values for both cases of with and without error

Sample Observations Without error With error

1 2 3 4 5 U V M U ′ V ′ M ′

1 74.030 74.002 74.019 73.992 74.008 2.140 1.676 2.140 0.892 0.133 0.892

2 73.995 73.992 74.001 74.011 74.004 1.225 0.984 1.225 0.829 0.141 0.829

3 73.988 74.024 74.021 74.005 74.002 2.007 1.994 2.007 0.071 0.185 0.185

4 74.002 73.996 73.993 74.015 74.009 1.793 1.477 1.793 1.174 0.285 1.174

5 73.992 74.007 74.015 73.989 74.014 1.717 1.539 1.717 2.418 0.663 2.418

6 74.009 73.994 73.997 73.985 73.993 0.517 1.300 1.300 2.291 0.152 2.291

7 73.995 74.006 73.994 74.000 74.005 0.233 0.460 0.460 2.455 0.972 2.455

8 73.985 74.003 73.993 74.015 73.988 0.451 0.891 0.891 2.033 1.140 2.033

9 74.008 73.995 74.009 74.005 74.004 0.072 0.177 0.177 2.223 0.509 2.223

10 73.998 74.000 73.990 74.007 73.995 0.401 0.355 0.401 3.098 1.148 3.098

11 73.994 73.998 73.994 73.995 73.990 1.323 0.647 1.323 2.529 0.677 2.529

12 74.004 74.000 74.007 74.000 73.996 1.028 1.421 1.421 0.703 1.932 1.932

13 73.983 74.002 73.998 73.997 74.012 1.222 1.007 1.222 0.803 1.994 1.994

14 74.006 73.967 73.994 74.000 73.984 2.549 1.486 2.549 0.170 1.539 1.539

15 74.012 74.014 73.998 73.999 74.007 1.352 1.013 1.352 0.228 1.139 1.139

16 74.000 73.984 74.005 73.998 73.996 1.738 0.653 1.738 0.564 0.719 0.719

17 73.994 74.012 73.986 74.005 74.007 1.448 0.551 1.448 0.571 0.544 0.571

18 74.006 74.010 74.018 74.003 74.000 0.273 0.346 0.346 0.916 2.002 2.002

19 73.984 74.002 74.003 74.005 73.997 0.646 0.059 0.646 1.204 1.252 1.252

20 74.000 74.010 74.013 74.020 74.003 0.624 0.341 0.624 0.507 0.987 0.987

21 73.9820 74.001 74.015 74.005 73.996 0.299 0.611 0.611 0.427 1.292 1.292

22 74.004 73.999 73.990 74.006 74.009 0.296 0.048 0.296 0.916 0.943 0.943

23 74.010 73.989 73.990 74.009 74.014 0.408 0.336 0.408 0.374 0.431 0.431

24 74.015 74.008 73.993 74.000 74.010 0.897 0.160 0.897 0.019 0.639 0.639

25 73.982 73.984 73.995 74.017 74.013 0.290 1.407 1.407 0.939 0.118 0.939

Now, to illustrate the importance of simultaneous moni-
toring of the process mean and variability, the performance
of the proposed MAX-EWMAMS control chart is com-

pared to the EWMA chart. In this regard, the EWMA and
MAX-EWMAMS chart statistics are plotted under the shift
magnitudes of δ = 0.75 andψ = 1.2 in Figs. 5 and 6, respec-
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Fig. 4 Effect of measurement errors on the rate of false alarm

Fig. 5 EWMA statistic values under the shift magnitude of δ = 0.75, ψ = 1.2 when C = 1, D = 1, λ = 0.2

Fig. 6 MAXEWMAS statistic values under the shift magnitudes of δ = 0.75, ψ = 1.2 when C = 1, D = 1, λ = 0.2

123



Arab J Sci Eng

tively, when C = 1, D = 1 and λ = 0.2. As can be seen
in Figs. 5 and 6, the MAX-EWMAMS chart issues a sig-
nal at the fourth and tenth samples while the EWMA chart
detects the fault at the 5th and 13th samples in the without
and with error data cases, respectively. In other words, the
obtained results support this claim that theMAX-EWMAMS
chart issues an out-of-control signal earlier than the EWMA
in both cases.

8 Conclusions

In this paper, the effect of measurement errors on the per-
formance of one of the most commonly used control charts
for simultaneous monitoring of process mean and variability,
i.e., the MAX-EWMAMS control chart, was first inves-
tigated. An additive covariate model in Phase II analysis
was considered in which the assumption of constant vari-
ance for measurement error is relaxed. Through simulation
studies, we showed that the measurement errors seriously
affect the detecting and diagnosing capability of the MAX-
EWMAMS control chart. Then, two remedial approaches
including the rank set sampling (RSS) and using a larger sam-
ple size were extended to compensate for the error effects.
The results showed that the performances of both remedial
measures were satisfactory. Finally, the effect of measure-
ment errors with linearly increasing variance on the rate of
false alarm was evaluated by a real-data example. Investigat-
ing the effect of the measurement errors on artificial neural
network (ANN)-based control charts is recommended as a
future study.
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