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ABSTRACT
This paper introduces aMarkovmodel in Phase II profilemonitoringwith
autocorrelated binary response variable. In the proposed approach,
a logistic regression model is extended to describe the within-profile
autocorrelation. The likelihood function is constructed and then a parti-
cle swarmoptimization algorithm (PSO) is tunedandutilized to estimate
the model parameters. Furthermore, two control charts are extended
in which the covariance matrix is derived based on the Fisher informa-
tion matrix. Simulation studies are conducted to evaluate the detecting
capability of the proposed control charts. A numerical example is also
given to illustrate the application of the proposed method.

1. Introduction

In many practical situations, the quality practitioners are involved in monitoring the quality
of a process or product which is characterized by a profile. A profile is referred as a functional
relationship between a response variable and one or more explanatory variables. Different
control schemes have been proposed by researchers for statistically monitoring of profiles.
However, most researches in profile monitoring assumed that the response variable follows
Normal distribution. In one of the most important researches, Kang and Albin (2000) pro-
posed two approaches for monitoring the simple linear profiles in a semiconductor manufac-
turing process. In the first approach, they used multivariate T2 control chart for monitoring
the slope and intercept parameters while in the second approach, they monitored the average
and standard deviation of residuals using exponentially weighted moving average (EWMA)
and R control charts, respectively. In order to obtain uncorrelated model parameters, Kim
et al. (2003) transformed the values of explanatory variable (X) so that the average of the
coded X-values changes to zero. Then, based on the transformed X-values, they combined
three EWMA-based control charts for simultaneous monitoring of the intercept, the slope as
well as the error variance in a simple linear model in Phase II. Some other researchers such as
Zou et al. (2006), Zou et al. (2007), Mahmoud (2008), Saghaei et al. (2009) and Zhang et al.
(2009) have investigated Phase I and Phase II monitoring of linear profiles. Woodall (2007)
also provided a literature review of profile monitoring and suggested more works in this area
due to the widespread applications of profile in various sciences.
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In many manufacturing or nonmanufacturing applications, the normality assumption of
the response variable of interest is violated. In other words, in some industrial and service
environments, the response variable is discrete or categorical such as binary or poisson dis-
tributions. In particular, a binary response variable can be used for classifying the outcome
of the process to acceptable or non-acceptable products. For instance, consider a cardiac sur-
gical center in which the outcome of the process is defined as the rate of the patient’s post-
surgical mortality. Obviously in this case, the response variable follows a binary distribution.
As a consequence, utilizing a simple linear regression for modeling the relationship between
a categorical response variable and one or more independent explanatory variables leads to
misleading results. Generally, the profile function can be reasonably handled by a generalized
linear model (GLM) when the response variable comes from the distributions of exponential
family, including binary, binomial, poisson, exponential, gamma and so on. Recently, there has
been a growing interest in GLM profile monitoring area. However, to the best of our knowl-
edge in comparisonwith the profilemonitoring under normal response variables, the number
of researches devoted tomonitoringGLMprofiles are negligible. TheGLMprofilemonitoring
approaches are addressed as follows:

Yeh et al. (2009) proposed several Hotelling’s T2 control charts for monitoring logistic pro-
files in Phase I. They provided a simulation study and compared the performances of the
proposed control charts in terms of signal probability criterion by considering the presence of
outliers, step shifts and drifts. Shang et al. (2011) combined the EWMAscheme and likelihood
ratio test (LRT) to construct a control chart for monitoring a logistic regression model over
the time. Their proposed control chart can simultaneously monitor the regression param-
eters and detects mean shifts in explanatory variables. Izadbakhsh et al. (2011) proposed
three methods based on ordinal logistic regression (OLR) for monitoring a profile with the
ordinal response variable. Saghaei et al. (2012) introduced two methods for monitoring the
logistic regression profiles in Phase II. In the first method, they used the combination of two
EWMA-based control charts formean and variancemonitoring of the residuals defined in the
logistic regression models while in the second method, they used a multivariate Hotelling’s
T2 control chart to monitor the model parameters. Soleymanian et al (2013)introduced four
control charts including Hotelling’s T2, multivariate exponentially weighted moving average
(MEWMA), LRT and LRT/EWMA for monitoring binary profiles in Phase II. They provided
a simulation study and compared the performance of the proposed control charts in terms of
ARL criterion. Noorossana and Izadbakhsh (2013) used multinomial logistic regression and
attempted to monitor profiles with multinomial response variable. Noorossana et al. (2014)
used logistic regression to model nominal responses and proposed three approaches includ-
ing LRT, MEWMA and support vector machine (SVM) to monitor the quality of the process
in Phase II. Shadman et al. (2014) introduced a unified procedure for monitoring the pro-
files in Phase I such that the response variable belongs to a large class of variables, including
continuous, count, or categorical variables. They compared their proposed procedure with
the existing control charts under two special cases of binomial and Poisson profiles. Shadman
et al. (2017) adopted a change point approach namely Rao score test (RST) for monitoring
generalized linear profiles in Phase II. Amiri et al. (2015) extended three control schemes
including a T2-based control chart, LRT method as well as F method for monitoring GLM
regression profiles in Phase I. Through a simulation study, they showed that the LRT control
chart outperforms two other control charts. Panza and Vargas (2016) studied Phase II mon-
itoring of profiles with Weibull response variable based on the relative log-likelihood ratio
statistic.
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Most profile monitoring works performed so far including those where mentioned above
have assumed that the response values within each profile are independent. However, inmany
conditions, the measurements are gathered at short time intervals and therefore the observa-
tions within each profile are autocorrelated. Also, some sources of variation such as user error,
variation of input materials and so on produce autocorrelated observations. It is proved by
researchers that the autocorrelation can significantly alter the statistical performance of dif-
ferent profile monitoring approaches. In recent years, the effect of autocorrelation on profile
monitoring approaches is addressed by several researchers.

Jensen et al. (2008) suggested linear mixedmodels for Phase I monitoring of linear profiles
in the case of within-profile autocorrelation. They showed via simulation that using linear
mixedmodel approach is preferable to an approach that ignores the autocorrelation structure.
Noorossana et al. (2008) explored the effect of neglecting autocorrelation between profiles.
They proposed three time series based control charts to eliminate the effect of autocorrelation.
Soleimani et al. (2009) studied Phase II monitoring of simple linear profiles when there is a
first order autoregressivemodel, i.e. AR(1) between the observations within each profile. They
presented a transformation on the response variable to remove the effect of autocorrelation
on the estimates of regression parameters. Then, they investigated the performance of four
control charts to monitor the simple linear profiles. Amiri et al. (2010) presented a case study
for a profile that can be expressed by a polynomial model. They showed that there is autocor-
relation within each profile and therefore using an ordinary least-square method that ignores
the autocorrelation is inappropriate. As an alternative approach, they also proposed amethod
using linear mixed model in Phase I. Soleimani et al. (2013) investigated Phase II monitoring
of multivariate simple linear profiles in the presence of within-profile autocorrelation. As a
remedial approach, they modified the transformation method by Soleimani et al. (2009) in
order to eliminate the effect of autocorrelation on the regression estimates. Keramatpour et al.
(2013) suggested a remedial measure to eliminate the effect of between-profiles autocorrela-
tion in Phase ІІ monitoring of polynomial profiles. Afterwards, a control chart based on the
generalized linear test (GLT) was proposed to monitor the coefficients of polynomial profiles
and an R control chart to monitor the error variance. They also proposed an estimator based
on the likelihood ratio approach for the change point estimation of parameters in auto-
correlated polynomial profiles. Soleimani et al. (2013) applied the linear mixed models for
Phase II monitoring of linear profiles in the presence of within-profile autocorrelation. Then,
they evaluated and compared the performance of three extended control charts including
Hotteling T2, MEWMA control chart and multivariate cumulative sum (MCUSUM) control
chart. Abdel-Salam et al. (2013) proposed a semiparametric procedure namely a mixed
model robust profile monitoring (MMRPM) considering within-profile autocorrelation.
Narvand et al. (2013) utilized the linear mixed models to account for autocorrelation of
response values within each profile. Then, they used Hotelling’s T2, MEWMA andMCUSUM
control charts for Phase II monitoring of the process. Koosha and Amiri (2013) studied
the effect of autocorrelation and proposed two remedies to account for the autocorrelation
within logistic profiles. Zhang et al. (2014) used the Gaussian process model in order to
monitor the linear profiles in Phase II when within-profile data are correlated. They pro-
posed two Shewhart-type multivariate control charts for monitoring the linear trend and
the within-profile autocorrelation, separately. Soleimani and Noorossana (2014) studied
monitoring of multivariate simple linear profiles in the presence of between-profile autocor-
relation. They proposed three time series based methods for eliminating the adverse effect
of between-profile autocorrelation on monitoring performance of their control schemes.
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Keramatpouret al. (2014) studied Phase II polynomial profile monitoring when there is an
AR(1) structure between the error terms in each profile. They employed three control charts
based on a remedial measure which is proposed for eliminating the effect of autocorrelation.
Khedmati andNiaki (2016) studied Phase IImonitoring of general linear profiles in situations
with between-profile autocorrelation of error terms. First, they proposed an approach based
on the U statistic for eliminating the effect of between-profile autocorrelation. Then, in order
to monitor the parameters of the model, they extended a control chart based on the adjusted
parameter estimates.

To review the literature of monitoring GLM profiles as well as monitoring autocorrelated
profiles with normal response variable systematically, a state-of-the-art survey is depicted and
provided inTableA-1 inAppendixA.As seen inTableA-1, none of the referred researchworks
in the context of profilemonitoring takes into account the presence of autocorrelation within-
profile in monitoring GLM profiles. Although, in real GLM profile monitoring applications,
the consecutive response values within each profile may be correlated.

To illustrate themotivation of our work, consider themanufacturing process of electrolytic
capacitors in which the measurements are collected at short time intervals. The electrolytic
capacitors are inspected by sampling and the result will either be “pass” or “fail.” The explana-
tory variables are the type of rawmaterial, level of voltage, frequency and temperature. In this
example, the response variable follows a binary distribution. Hence, the relationship between
the response variable and the explanatory variables is modeled by a logistic regression model.
However, this model is strongly depends on the independency assumption of response vari-
able in different levels of explanatory variables. As mentioned in the motivation example, due
to the short interval between measuring the response variables within each profile, the inde-
pendency assumption of response variables within each profile is violated. In order to deal
with this issue and to fill the mentioned research gap, in this paper we focus on Phase II mon-
itoring of binary profiles in which the response values within each profile are correlated. The
proposed monitoring schemes not only monitors step shifts in the regression parameters, but
also it is capable to detect changes in the autocorrelation coefficient. The differences between
our study and other works can be observed in the last row of Table A-1 in Appendix A.

The rest of this paper is organized as follows: The framework of the proposed method is
presented in Section 2. Then, the stages of our novel approach for Phase IImonitoring of auto-
correlated binary profiles is illustrated in Section 3. Simulation studies are given in Section 4
to study the performance of the proposed method in detecting various out-of-control scenar-
ios in terms of ARL criterion. An illustrative example is presented in Section 5 to illustrate the
application of the proposed method. Conclusion remarks and a recommendation for future
research are given in Section 6.

2. The framework of the proposedmethodology

In this section, the proposed methodology for Phase II monitoring of binary logistic profiles
in the case of within-profile autocorrelation is illustrated. Our framework methodology
consists of five steps as follows:

In step 1, a logistic regression model which takes into account within-profile autocorre-
lation based on Markov model is developed. Based on the autocorrelated response values
in step 1, the likelihood function for each profile is constructed in step 2. In step 3, first a
parameter tuning approach based on design of experiments (DOE), desirability function
analysis (DFA) and TOPSIS method is presented in order to obtain the optimal parameters of
the PSO algorithm. Then, the PSO algorithm with tuned parameters is utilized for estimating
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Figure . Proposed methodology.

the parameters of the extended logistic regressionmodel. Afterwards in step 4, the covariance
matrix considering the autocorrelation structure between consecutive response values in
each profile is derived. Finally in step 5, the Hotelling’s T2 and MEWMA statistics based
on the estimated model parameters and the covariance matrix is extended and utilized for
detecting different step shifts. The proposed methodology is depicted in Figure 1:

3. Steps of the proposedmethodology

In order to monitor binary profiles considering within-profile autocorrelation the following
steps are applied:

Step 1: Extending an autocorrelated binary profile model
Let yi be the response value at ith; i = 1, . . . , n experimental setting of a given profile. It is

assumed that yi follows binary distributionwith a success probability ofπi. The logistic regres-
sion is typically employed to demonstrate a functional relationship between the response and
explanatory variables. Thus, under independency assumption on y1, y2, . . . , yn themodel rep-
resentation is:

log it(πi) = log
(

πi

1 − πi

)
= exiβ, (1)

where xi = (xi1, xi2, . . . , xip) is the explanatory variables corresponding to ith experimen-
tal setting,β = (β1, β2, . . . , βp)

T is the logistic regression parameters and xiβ =∑p
j=1 xijβ j.

Equivalently, Eq. (1) can be rewritten as follows:

p(yi = 1) = πi = eXiβ

1 + eXiβ
. (2)

Note that in the logistic regression models, the value of xi1 is usually considered equal
to one. As the result, β1 will be the intercept parameter of the model. The success proba-
bility in each experimental setting only depends on the value of corresponding explanatory
variables. As noted in most manufacturing and nonmanufacturing applications, the indepen-
dency assumption of response variables within each profile is violated. In such situations, the
value of yi; i = 1, 2, . . . , n not only is related to the vector of explanatory variables in the ith
treatment (xi), but also on the value of observed responses in the previous experimental set-
tings, i.e. (yi−1, yi−2, . . . , y1). As a consequence, using Eq. (2) for formulating the relationship
between explanatory variables and the response variable leads to misleading results. To deal
with this issue, we extend a binary regression profile considering a first order autoregressive
model, i.e. AR(1) between consecutive response values in each profile. In a given profile, the
success probability of response variable in the ith experimental setting can be handled by a
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binary Markov chain of state space {0, 1} and the transition matrix as follows:

Pi =
[
1 − p(yi = 1|yi−1 = 0) p(yi = 1|yi−1 = 0)
1 − p(yi = 1|yi−1 = 1) p(yi = 1|yi−1 = 1)

]
, (3)

where

pyi−1 = P(yi = 1|yi−1 = j)

=
⎧⎨
⎩
P(yi = 1|yi−1 = 0) = P0 = 1

1+eXiβ

(
eXiβ − ρe

1
2 (Xi+Xi−1)β

)
yi−1 = 0

P(yi = 1|yi−1 = 1) = P1 = 1
1+eXiβ

(
eXiβ + ρe

1
2 (Xi−Xi−1)β

)
yi−1 = 1

. (4)

The proof for Eq. (4) is given in Appendix B. Prior to employ the model, it is important
to diagnose the autocorrelation structure for the observed binary data. The general cross-
product statistic (Getis, 2009) measures the spatial autocorrelation and can be modified for
a sequence of dependent binary random variables. In fact, it measures how strong the ten-
dency is for an arbitrary observed value from its previous observation alike than the other
observations located far from the given observation.

For a binary sample path, y1, . . . , yn, the general cross-product statistic is:

C =
∑
i

∑
j

WijZij, (5)

where Zij = (yi − y j)
2 represents the similarity of ith and jth response values whileWij is the

measure of the proximity of yi and y j as follows:

Wij =
{
1 if yi and y j are adjacent
0 otherwise . (6)

By normalizing C and using the simple central limit theorem, one may construct a test
function to check the significance of the autocorrelation structure among the data. Let S0, S1
and S2 are defined as:

S0 =
∑∑

i �= j

Wij, S1 = 1
2

∑∑
i �= j

(Wij +Wji)
2, S2 =

∑
i

(Wi. +W.i)
2. (7)

The values of T0, T1 and T2 are computed by substituting Zij
′s instead ofWij

′s in Eq. (7).
The C statistic approximately follows a normal distribution with mean E(C) = S0T0

n(n−1) and
variance

Var(C) = S1T1
2n(n − 1)

+ (S2 − 2S1)(T2 − 2T1)
4n(n − 1)(n − 2)

+ (S20 + S1 − S2)(T 2
0 + T1 − T2)

n(n − 1)(n − 2)(n − 3)
− [E(C)]2.

(8)
When Z = C−E(C)√

Var(C)
/∈ [−Zα/2,Zα/2], the existence of the autocorrelation structure is veri-

fied at confidence level of 100(1 − α)%.
Step 2: Constructing the likelihood function based on response values in Step 1
Yeh et al. (2009) studied the GLM profile monitoring in the case of binomial response vari-

able. They mentioned that the joint likelihood function of observations under independency
assumption of response values within each profile is expressed as:

L(π; y) =
n∏

i=1

(
πi

yi

)
πi

yi (1 − πi)
mi−yi, (9)
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where mi is the number of observations in ith experimental setting, π = (π1, π2, . . . , πn)
T

and y = (y1, y2, . . . , yn)T . Eq. (9) can be rewritten as follows when there is a single observa-
tion in each experimental setting:

L(π; y) =
n∏

i=1

πi
yi (1 − πi)

1−yi (10)

The likelihood function in Eq. (10) can only be used when the consecutive response values
within each profile are independent. In order to provide the joint likelihood function which
takes into account the autocorrelation structure between binary response values within each
profile, we use themodel provided byAzzalini (1994). Once y1,y2, . . . , yn have been observed,
the logarithm of likelihood function corresponding to a given profile in terms of the vector β

and parameter ρ can be written as follows:

log
(
L(ρ,β; y)) =

n∑
i=1

[
yi log it(pyi−1 ) + log(1 − pyi−1 )

]
, (11)

where pyi−1 can be obtained according to Eq. (4) and log it(pyi−1 ) is given by:

log it(pyi−1 ) = log it
[
P(yi = 1|yi−1)

] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

log

⎡
⎣ 1

1+eXiβ

(
eXiβ−ρe

1
2 (Xi+Xi−1)β

)

1− 1
1+eXiβ

(
eXiβ−ρe

1
2 (Xi+Xi−1)β

)
⎤
⎦ yi−1 = 0

log

⎡
⎣ 1

1+eXiβ

(
eXiβ+ρe

1
2 (Xi−Xi−1)β

)

1− 1
1+eXiβ

(
eXiβ+ρe

1
2 (Xi−Xi−1)β

)
⎤
⎦ yi−1 = 1

.

(12)
Note that, it is assumed that the explanatory variables are not random and we keep them

to be constant form profile to profile. In a given profile, the estimation of the extended
model parameters can be obtained by maximizing the likelihood function based on the fixed
explanatory variables and autocorrelated binary response variables.

Step 3: Estimating model parameters via maximizing the likelihood function using
PSO algorithm with tuned parameters

In the literature of GLM profile monitoring, it is customary to use the iterative weighted
least squares (IWLS) estimation method to obtain the MLE ofβ (see Yeh et al. (2009), Shang
et al. (2011),Amiri et al. (2015) for detailed information). When the consecutive response
values within each profile are correlated, using IWLSmethod is no longer reasonable because
this method is provided under independency assumption of response values. Moreover,
in the presence of within-profile autocorrelation, the likelihood function is much more
complex in comparison with Eq. (10). Hence, a heuristic or a metaheuristic procedure can
be applied to estimate the model parameters. In this paper, the estimations of the extended
model parameters are obtained via maximizing the constructed likelihood function via
particle swarm optimization algorithm. In order to improve the estimations of the model
parameters, a tuning approach for determining the optimal parameters of PSO algorithm is
also introduced. The PSO algorithm as well as the tuning parameter approach is discussed in
the subsequent subsections.

Step 3.1: PSO algorithm
The PSO algorithm which is extended by Eberhart and Kennedy (1995) is a metaheuristic

global search algorithm based on the swarm behavior of particles. A point in the problem
space is referred to a particle which is considered as a candidate solution to the optimization
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problem. In this algorithm, the collective behavior of a population not only depends on the
individual behavior of each particle, but also on the interaction between them. Hence, there
is a complex nonlinear relationship between the individual and collective behavior in PSO
algorithm. Each particle in PSO algorithm initializes with a random position (solution) and
seeks the optimal solution such that it can keep track of its position, velocity (change pattern
of solution) and fitness. The position and velocity of each particle is adjusted by considering
its own experience and social cooperation by its fitness to the environment. As a result, three
following factors can affect the behavior of a given particle: (1) its current position, (2) the
best position of the particle among its previous positions (personal best), and (3) the best
position among all particles in the population (global best). Each particle improves its position
based on the current velocity as well as the personal best and the global best. Therefore, the
velocity and position of ith particle, i = 1, . . . ,M in the (k + 1)th iteration can be expressed
by Eqs. (13) and (14), respectively:

νk+1
i = wk+1νk

i + c1r1
(
pk
i − xki

)+ c2r2
(
pk
g − xki

)
, (13)

xk+1
i = xki + νk+1

i , (14)

where c1 and c2 are cognitive learning rate and social learning rate, respectively while r1 and
r2 are random vectors with uniform distribution within the range [0, 1]. In Eq. (13), pk

i and pk
g

represent personal best of the ith particle and global best in kth iteration, respectively. Note
that, w in (k + 1)th iteration is defined as the inertia weight which can be obtained as:

wk+1 = wdamp.w
k, (15)

where wdamp can be selected within the range [0, 1] which implies that the effect of inertia in
consecutive iterations decreases in comparison with pk

i and pk
g . Utilizing the PSO algorithm

for estimating the parameters of the extended logistic regressionmodel is depicted in Figure 2.
Step 3.2: Tuning parameter approach
The heuristic and metaheuristic algorithms are strongly influenced by their parameter

values. In To solve this issue, a tuning parameter approach based on design of experiments
(DOE), desirability function analysis (DFA) and TOPSIS technique is presented for improv-
ing the performance of the extended PSO algorithm. Note that, the technique for order of
preference by similarity to ideal solution (TOPSIS) is a compensatory multi-criteria decision
method to choose the best solution among a set of alternatives which are characterized by
multiple criteria. The compensatory methods provide trade-offs between criteria by compen-
sating a poor result in one criterion by a good result in the other one. Based on identifying
weights for each criterion as well as the score of each alternative with respect to each criterion,
TOPSIS method selects the alternative which is closest one to the positive ideal solution and
the farthest one from the negative ideal solution. The positive ideal solution is the alternative
with the best level for all criteria considered while the negative ideal solution is the one which
had the worst criteria values. For detailed information about this method refer to Hwang and
Yoon (1981). The suggested tuning parameter approach not only seeks to improve the esti-
mation of the regression parameters, but also to minimize the algorithm running time. The
procedure for implementing the tuning parameter approach is given as:

1. In this stage, we attempt to efficiently determine the optimal level of PSO parameters
using the minimum number of experiments. An experiment design is implemented in
which the PSO parameters includingmaximum number of iterations (maxit), number
of particles in each population (npop), cognitive learning rate (c1), social learning rate
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Figure . The PSO algorithm to estimate parameters.

(c2), inertia weight (w) as well aswdamp are considered as the controllable factors. The
PSO parameters along with their corresponding levels are summarized in Table 1.

Implementing a full factorial design contains totally 2 × 3 × 3 × 3 × 3 × 3 = 486 exper-
iments which is not reasonable due to the time and cost restrictions. Hence, a Taguchi
design with orthogonal array L36(21 × 35) is created in which the estimated parameters of
the extended logistic regression model, i.e. vector β and autocorrelation coefficient ρ as well
as the computational run time of the algorithm (T ) are considered as the response variables.

Note that, A Taguchi design, or an orthogonal array, is a method of designing experiments
that usually requires only a fraction of the full factorial combinations. The goal of the Taguchi
method is to determine a setting for controllable factors which generates acceptable responses

Table . The PSO parameters.

PSO parameter maxit npop C C w wdamp

Number of levels      
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under natural environmental and process variability. An orthogonal array means the design
is balanced so that factor levels are weighted equally. Because of this, each factor can be eval-
uated independently of all the other factors, so the effect of one factor does not influence the
estimation of another factor. In this regard for each treatment, the model parameters are esti-
mated by N replicates and the average value of the estimated model parameters as well as the
average computational time of each run are recorded.

2. In this stage, based on the desirability function approach the performance matrix of
the L36 design is constructed as follows:

D =

⎡
⎢⎢⎢⎢⎢⎣

d1
ρ d1

β1
· · · d1

βp
d1
T

d2
ρ d2

β1
· · · d2

βp
d2
T

...
...

. . .
...

...

d36
ρ d36

β1
· · · d36

βp
d36
T

⎤
⎥⎥⎥⎥⎥⎦ , (16)

where d j
i is the desirability function for jth treatment and ith objective function. Note

that, the desirability function approach transforms the estimated response variables
into a scale-free value by assigning values in the range [0, 1] to the possible value
of each response in each treatment. In a given treatment, as the average value of an
estimated parameter (β j; j = 1, . . . , p or ρ) is closer to its nominal value, the corre-
sponding desirability function will be closer to one. Similarly, in a given treatment, as
the average computational time of each run decreases, the corresponding desirability
function will be closer to one. The desirability function for a nominal-the-best (NTB),
larger the best (LTB) and smaller the best (STB) response variable would be obtained
by Eqs. 17–19. The desirability function corresponding to the model parameters (β ′s
and ρ) can be calculated according to Eq. (17) while the desirability function for com-
putational algorithm time (T ) can be found in Eq. (19).

d j
i (x) =

⎧⎪⎪⎨
⎪⎪⎩

ŷi(x)−lbi
τi−lbi

; lbi ≤ ŷi(x) ≤ τi

ŷi(x)−ubi
τi−ubi

; τi ≤ ŷi(x) ≤ ubi
0; ŷi(x) < lbi or ŷi(x) > ubi

, (17)

d j
i (x) =

⎧⎪⎨
⎪⎩
0; ŷi(x) ≤ lbi
ŷi(x)−lbi
ubi−lbi

; lbi ≤ ŷi(x) ≤ ubi
1; ŷi(x) ≥ ubi

, (18)

d j
i (x) =

⎧⎪⎨
⎪⎩
1; ŷi(x) ≤ lbi
ubi−ŷi(x)
ubi−lbi

; lbi ≤ ŷi(x) ≤ ubi
0; ŷi(x) ≥ ubi

(19)

3. In this step, the performance matrix is normalized as follows:

Nd j
i = d j

i√
36∑
j=1

(d j
i )

2
i = 1, . . . , p+ 2, j = 1, . . . , 36, (20)

where Nd j
i is the normalized value of desirability function for jth treatment and ith

objective function.
4. In this step, the weighted normalized performance matrix is computed. In this regard,

each column of matrix ND = [Nd j
i ] j,i is multiplied by the relative importance of the
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corresponding objective as follows:

V =

⎡
⎢⎢⎢⎢⎣
Wρ × Nd1

ρ Wβ1 × Nd1
β1

· · · Wβp × Nd1
βp

WT × Nd1
T

Wρ × Nd2
ρ Wβ1 × Nd2

β1
· · · Wβp × Nd2

βp
WT × Nd2

T
...

...
. . .

...
...

Wρ × Nd36
ρ Wβ1 × Nd36

β1
· · · Wβp × Nd36

βp
WT × Nd36

T

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
V 1

ρ V 1
β1

· · · V 1
βp

V 1
T

V 2
ρ V 2

β1
· · · V 2

βp
V 2
T

...
...

. . .
...

...
V 36

ρ V 36
β1

· · · V 36
βp

V 36
T

⎤
⎥⎥⎥⎥⎦ , (21)

where Wi is the relative importance of the ith objective and V j
i = Wi × Nd j

i is the
weighted normalized desirability function for jth treatment and ith objective function.

5. In this step, the vector of positive and negative ideal solutions denoted by V+ and V−,
respectively are determined as follows:

V+ =
(

(max
j

V j
ρ ,max

j
V j

β1
, . . . ,max

j
V j

βp
,max

j
V j
T )| j = 1, . . . , 36

)

=
(
V+

ρ ,V+
β1

, . . . ,V+
βp

,V+
T

)
, (22)

V− =
(

(min
j
V j

ρ ,min
j
V j

β1
, . . . ,min

j
V j

βp
,min

j
V j
T )| j = 1, . . . , 36

)

=
(
V−

ρ ,V−
β1

, . . . ,V−
βp

,V−
T

)
. (23)

6. Now, we have to measure the distance of vectorVj = (V j
ρ ,V j

β1
, . . . ,V j

βp
) fromV+ and

V− For this purpose the simple Euclidean distance of jth treatment from the positive
and negative ideal solutions is employed as:

S j+ =
√(

V j
ρ −V+

ρ

)2
+
(
V j

β1
−V+

β1

)2
+ . . . +

(
V j

βp
−V+

βp

)2
+
(
V j
T −V+

T

)2
,(24)

S j− =
√(

V j
ρ −V−

ρ

)2
+
(
V j

β1
−V−

β1

)2
+ . . . +

(
V j

βp
−V−

βp

)2
+
(
V j
T −V−

T

)2
.(25)

7. In this step, the relative adjacent of the jth treatment from the positive ideal solution
(rs j ∈ [0, 1]) is computed by Eq. (26). As rs j tends to the value of 1, the desirability of
the jth treatment increases.

rs j = S−
j

S+
j + S−

j
. (26)

8. Finally in this step, for each level of parameters, we calculate the average value of rela-
tive adjacent in the corresponding treatments.

Step 4: Deriving the covariance matrix of model parameters
The covariance matrix of the parameters of the logistic regression model in the case of

independency assumption can be estimated as follows:

�0 = (XTWX)−1, (27)
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where

W =

⎛
⎜⎜⎜⎝

π1(1 − π1) 0 · · · 0
0 π2(1 − π2) · · · 0
...

...
. . .

...
0 0 · · · πn(1 − πn)

⎞
⎟⎟⎟⎠ (28)

Eq. (28) neglects the autocorrelation structure of response values within each profile.
Therefore, using Eq. (27) for calculating the covariance matrix of the estimated parame-
ters in the extended logistic regression model leads to the misleading results. To deal with
this issue, we proposed a new approach for deriving the covariance matrix of the estimated
model parameters denoted by �Û where Û = (ρ̂, β̂1, . . . , β̂p) based on the Fisher informa-
tion matrix approach. Deriving the covariance matrix of the extended model parameters is
given in Appendix C.

Step 5: Computing monitoring statistics and corresponding upper control limits
In this step, two control charts including Hotelling’s T2 and MEWMA control charts

are proposed for Phase II monitoring of binary profiles in the case of within profile
autocorrelation.

Step 5.1: Hotelling’s T2 control chart
The Hotelling’s T2 control chart is used by some researchers for monitoring different pro-

files. In the case of GLM profiles Yeh et al. (2009), Noorossana and Izadbakhsh (2013), and
Amiri et al. (2015) used T2 control chart in Phase I while some other researchers such as
Saghaei et al. (2012), and Soleymanian et al. (2013) utilized this approach in Phase II. The
T2 statistic considering the autocorrelation structure of response values within jth profile is
modified as follows:

T 2
j =

(
Û − E(Û)

)
�−1

Û

(
Û − E(Û)

)T
, (29)

where E(Û) = (ρ, β1, β2, . . . , βp) is the expected value of the estimated parameters in the
extended logistic regression model. Note thatU = (ρ, β1, β2, . . . , βp) denotes the in-control
model parameters and �Û is the covariance matrix of the estimated model parameters
obtained in Step 4. When T 2

j exceeds the upper control limit (UCL), an out-of-control signal
will be received. The UCL is set such that the in-control average run length (ARL0) becomes
a predetermined value.

Step 5.2: MEWMA control chart
The MEWMA control chart is first proposed by Lowry et al. (1992). In the case of mon-

itoring GLM profiles this approach is first developed by Zou et al. (2007). In the pres-
ence of within-profile autocorrelation, the MEWMA statistic for jth profile is modified as
follows:

MEWMAj = Zj

(
λ

2 − λ
�Û

)−1

Zj
T , (30)

where

Zj = λ
(
Û − U

)
+ (1 − λ)Zj−1. (31)

In Eq. (31) Z0 = 0 and λ is the smoothing parameter satisfying 0 ≤ λ ≤ 1. TheUCL of the
MEWMA statistic is obtained through simulation runs such that a desired ARL0 is achieved.
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Table . Taguchi design.

Controllable factors Controllable factors

treatment max it npop c1 c2 w wdamp treatment max it npop c1 c2 w wdamp

             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             

4. Performance evaluation

In this section, the performance of the proposed monitoring schemes is evaluated and com-
pared through a numerical example in terms of ARL criterion. Note that ARL is defined
as the average number of samples which is taken and plotted until the first sample falls
outside the control limits. Without loss of generality, we assume that p is equal to 2. We
also assume that when the process is in-control U = [ρ, β1, β2]T = [0.15, 3, 2]T . The design
matrix of explanatory variables is fixed form profile to profile and considered equal to X =
(

1 1 · · · 1
ln(0.02) ln(0.04) · · · ln(0.90))

T . It is also assumed that for the extended MEWMA control chart λ is
equal to 0.2. As mentioned, for tuning the PSO parameters, a Taguchi design was proposed.
Table 2 tabulates the Taguchi design with the six controllable factors mentioned in Table 1.

The response values in each row of the proposed design in Table 2 are Z1 =∑N
k=1 ρ̂k/N,

Z2 =∑N
k=1 β̂1k/N,Z3 =∑N

k=1 β̂2k/N,Z4 =∑N
k=1 Tk/N, whereN denotes the total number of

replicates in each treatment of the Taguchi design and it is considered equal to 1000. Table 3

Table . Results of tuning parameters.

PSO parameter Index of level Level Average relative adjacent

max it   .
  .

npop   .
  .
  .

c1   .
 . .
  .

c2   .
 . .
  .

w  . .
 . .
  .

wdamp  . .
 . .
 . .
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Figure . The average of relative adjacent of the levels of the PSO parameters.

contains the average relative adjacent for each level of PSO parameters along with the corre-
sponding levels as well as the index of each level whenW1 = 0.2,W2 = 0.375,W3 = 0.375
andW4 = 0.05. Recall that as the average relative adjacent for each level of a given param-
eter tends to the value of 1, the desirability of the corresponding level increases. The results
of tuning parameter are also depicted in Figure 3. The results shows that the optimal PSO
parameters are max it = 30, npop = 500, c1 = 1, c2 = 2, w = 1 and wdamp = 0.8.

The covariance matrix of model parameters according to Appendix C is computed equal

to �Û = (
0.0352 −0.0899 −0.0675

−0.0899 2.3084 1.7293
−0.0675 1.7293 1.4280

). For consistency with the literature, we set the UCL for both

Hotelling’s T2 andMEWMA control charts by using simulation runs to obtain the probability
of Type I error equal to α = 0.005 or equivalently the in-control average run length (ARL0)
equal to 200. The UCLs for Hotelling’s T2 and MEWMA control charts through simulation
experiments are obtained equal to 11.74 and 10.15, respectively. Then, the performance of two
methods to detect different out-of-control scenarios are compared in terms of out-of-control
ARL (ARL1). Note that the step changes in the model parameters are denoted by β1 + k1σβ1 ,
β2 + k2σβ2 and ρ + k3σρ , respectively. The coefficients of k1, k2 and k3 are the magnitude of
shift in the intercept, slope and autocorrelation parameters, respectively. Note that, when a
given step change in a given model parameter occurs, the in-control value of the parameter
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Table . The ARLs under different step changes in intercept parameter.

k1

control chart  . . . . 

Hotelling’s T . . . . . .
MEWMA . . . . . .

k1

. . . .  .

Hotelling’s T . . . . . .
MEWMA . . . . . .

suddenly changes to an out-of-control value and it does not change until the shift is detected
by the control chart.

The performance of both methods in detecting step changes in intercept parameter is dis-
played in Table 4. As seen in Table 4, the performance of both extended Hotelling’s T2 and
MEWMA control charts in detecting different step changes in intercept parameter is satisfac-
tory. For bothmethods as themagnitude of shift in intercept parameter β1 increases, theARL1
values decrease. As expected, one could see that in small shifts (k1 = 0.2, 0.4, 0.6, 0.8, 1) the
MEWMAcontrol chart outperforms theHotelling’s T2 control chart.While the detecting per-
formance of Hotelling’s T2 control chart under large shifts (k1 = 1.2, 1.4, 1.6, 1.8, 2, 2.2) is
better than MEWMA control chart. Note that, the superior performance of MEWMA con-
trol chart in detecting small shifts in comparison with Hotelling’s T2 (a Shewhart-type control
chart) is due to the memoryless nature of this control chart.

The ARLs of Hotelling’s T2 and MEWMA control charts in detecting the step changes in
slope parameter is summarized in Table 5. Similar to Table 4, the results of Table 5 show that
the detecting performance of both methods in detecting step change in slope parameter is
satisfactory. As we can see in Table 5 when k2 = 0.2, 0.4, 0.6, 0.8, the MEWMA performs
better than Hotelling’s T2 control chart. However, the superior performance of Hotelling’s T2

control chart in comparison with MEWMA chart when k2 = 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2 can
be concluded form Table 5. Obviously, as the magnitude of shift in slope parameter increases,
the ARL1 values under both methods decrease.

The proposedmonitoring schemes not only detect step shifts in the regression parameters,
but also are capable to detect changes in autocorrelation coefficient. Table 6 tabulates the per-
formance of both control charts in detecting step shifts in autocorrelation coefficient. As seen
both methods can adequately detect various step changes in the autocorrelation coefficient.
However, the performance of MEWMA control chart is superior than Hotelling’s T2 control
chart under all considered step shifts in autocorrelation coefficient.

Table . The ARLs under different step changes in slope parameter.

k2

control chart  . . . . 

Hotelling’s T . . . . . .
MEWMA . . . . . .

k2

. . . .  .

Hotelling’s T . . . . . .
MEWMA . . . . . .
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Table . The ARLs under different step changes in autocorrelation parameter.

k3

control chart  . .  . .

Hotelling’s T . . . . . .
MEWMA . . . . . .

5. An illustrative example

In this section, a numerical example based on the data of Section 4 is presented to illustrate
the application of the proposed method. We generate out-of-control autocorrelated profiles
according to AR(1) model by inducing a step change of (k1 = 0.75, k2 = 0, k3 = 0) in the
vector ofmodel parameters until the chart statistics in both the proposed control charts exceed
theUCL. The chart statistics for Hotelling’s T2 andMEWMAcharts are plotted and illustrated
in Figures 4 and 5, respectively. As seen, Hotelling’s T2 triggers an out-of-control signal at 12th
sample while MEWMA chart detects the fault at 4th sample. This issue reflects the sensitivity
of the extended MEWMA chart to detect small shifts in the model parameters rather than
Hotelling’s T2 chart.
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Figure . Chart statistics and signal time for T Hotelling’s control chart.
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Figure . Chart statistics and signal time for MEWMA control chart.
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Table . The estimated model parameters, the Z values and chart statistics for illustrative example.

subgroup ρ̂ β̂1 β̂2 Z T MEWMA

 . . . − . . .
 . . . − . . .
 . . . − . . .
 . . . − . . 14.8597
 . . . − . . —
 . . . − . . —
 . . . − . . —
 . . . − . . —
 . . . − . . —
 . . . − . . —
 . . . − . . —
 . . . − . 14.0431 —

The estimatedmodel parameters by using the extended PSO algorithm (whose parameters
are tuned), the Z values and charts statistics for bothmethods are also summarized in Table 7.
The results confirm the existence of autocorrelation structure at confidence level of 95% for
all 12 profiles. Note that, the values of chart statistics of bothmethods corresponding to signal
time are bolded as well in this table.

Note that the proposedmethodology tomonitor the binary profiles considering thewithin-
profile autocorrelation is coded in MATLAB software and can be easily used by practition-
ers in real world problems. The codas are available upon request by interested readers and
practitioners.

6. Concluding remarks and a future research

Most of researchworks in profilemonitoring area are presented under the assumption that the
response variables are independent and identically normally distributed. Some researches on
profilemonitoring are performedwhen only one of the normality and independency assump-
tions is violated. However, in some production systems one can face withmonitoring a profile
in which both mentioned assumptions are violated, simultaneously. In this paper, we studied
monitoring binary profiles inwhich the response valueswithin each profile are autocorrelated.
In the first step of our work, we extended a binary profile model which considers the within
autocorrelation structure in each profile. Then, based on the autocorrelated response values,
we constructed a likelihood function. In the third step, we estimated the model parameters
via maximizing the likelihood function in the second step using PSO algorithm. To improve
the efficiency of the PSO algorithm in estimating the model parameters, a tuning parame-
ter approach was also introduced and implemented in the third step. As explained, since the
response values within each profile are autocorrelated, using the methods available in liter-
ature for computing the covariance matrix of model parameter leads to misleading results.
Hence, in the fourth step a new methodology for deriving the covariance matrix of model
parameter was proposed. In the final step, twomonitoring statistics are developed and utilized
for Phase II monitoring of the process. We evaluated the performance of both control charts
in detecting step changes in model parameters including regression parameters and autocor-
relation coefficient. As explained, one of the superiority of our work rather than the researches
in the literature is that it can also detect shifts in the autocorrelation coefficient. The results
of simulation study showed that both methods can adequately detect various shifts either
in regression parameters as well as autocorrelation coefficient. The results also showed that
the MEWMA chart outperforms the Hotelling’s T2 chart in detecting small shifts in regres-
sion parameters while the performance of the Hotelling’s T2 chart in detecting large shifts in
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regression parameters is better thanMEWMA chart. In addition, the MEWMA control chart
outperforms Hotelling’s T2 control chart in detecting all considered shifts in the autocorre-
lation coefficient. Finally, we presented an illustrative example to show the application of the
proposed method. Monitoring autocorrelated binary profiles in Phase I is recommended as a
future research.
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Appendix A: A state-of-the-art survey

Table A-. A review on the literature of monitoring GLM profiles as well as autocorrelated profiles.

Phase
Type of

autocorrelation
Relaxing Relaxing

Phase Phase Normality independence within between
Research I II assumption assumption profile profile monitoring approach

Jensen et al. ()
√ √ √

T

Noorossana et al. ()
√ √ √

EWMA/R, T and EWMA-
Yeh et al. ()

√ √
T

Soleimani et al. ()
√ √ √

T, Residuals-based T,
EWMA/R and EWMA-

Amiri et al. ()
√ √ √

T

Shang et al. ()
√ √

EWMA-GLM
Izadbakhsh et al. ()

√ √
χ 2 , EWMA and

χ 2/EWMA
Saghaei et al. ()

√ √
EWMA- and T

Soleymanian et al. ()
√ √

T, MEWMA, LRT and LRT/
EWMA

Noorossana and
Izadbakhsh ()

√ √
T, LRT

Soleimani et al. ()
√ √ √

MEWMA and
MEWMA/χ2

Keramatpour et al. ()
√ √ √

GLT/R
Soleimani et al. ()

√ √ √
T, MEWMA and MCUSUM

Abdel-Salam et al. ()
√ √ √

T

Narvand et al. ()
√ √ √

T, MEWMA and MCUSUM
Koosha and Amiri ()

√ √ √ √
T

Noorossana et al. ()
√ √

LRT, MEWMA and SVM
Shadman et al. ()

√ √
SLRT

Shadman et al. ()
√ √

Rao score test
Zhang et al. ()

√ √ √
Shewhart-type control

charts
Soleimani and
Noorossana ()

√ √ √
T,MEWMA/χ2 and

MEWMA-
Keramatpour et al. ()

√ √ √
T, Residuals-based T

and EWMA/R
Amiri et al. ()

√ √
T, LRT and F-test

Panza and Vargas ()
√ √

relative log-likelihood
ratio statistic based
charts

Khedmati and Niaki ()
√ √ √

chart based on adjusted
parameter estimates

This paper
√ √ √ √

T and MEWMA
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Appendix B: Calculating the success probability considering AR(1) model

Azzalini (1994) stated that in a non-stationary case, the marginal mean πi does not depend
either on the past value of the process or on the autocorrelation parameter. To achieve this,
he proposed the following model at ith experimental setting:

p j = πi − ρ

[
πi(1 − πi)

πi−1

1 − πi−1

] 1
2

+ jρ[πi(1 − πi)]
1
2

[(
1 − πi−1

πi−1

) 1
2

+
(

πi−1

1 − πi−1

) 1
2
]

,

(B1)

where p j = P(yi = 1|yi−1 = j). If j = 0, then

p0 = eXiβ

1 + eXiβ
− ρ

⎛
⎝ eXiβ

1 + eXiβ

1
1 + eXiβ

eXi−1β

1+eXi−1β

1
1+eXi−1β

⎞
⎠

1
2

= 1
1 + eXiβ

(
eXiβ − ρe

1
2 (Xi+Xi−1 )β

)
,

(B2)
Else if j = 1, we have

p1 = eXiβ

1 + eXiβ
− ρ

⎛
⎝ eXiβ

1 + eXiβ

1
1 + eXiβ

eXi−1β

1+eXi−1β

1
1+eXi−1β

⎞
⎠

1
2

+ ρ

[
eXiβ(

1 + eXiβ
)2
] 1

2

⎡
⎢⎣
⎛
⎝ 1

1+eXi−1β

eXi−1β

1+eXi−1β

⎞
⎠

1
2

+
⎛
⎝ eXi−1β

1+eXi−1β

1
1+eXi−1β

⎞
⎠

1
2
⎤
⎥⎦ . (B3)

Simplifying Eq. (B3) leads to:

1
1 + eXiβ

(
eXiβ − ρe

1
2 (Xi+Xi−1)β

)
+ ρ

eXiβ/2

1 + eXiβ

[
e−Xi−1β/2 + eXi−1β/2]

= 1
1 + eXiβ

(
eXiβ + ρe

1
2 (Xi−Xi−1)β

)
. (B4)

Appendix C: Deriving the covariancematrix

For simplicity, we consider p = 2 and then represent the logarithm of likelihood function
L(ρ, β1, β2) by L. The covariance matrix can be obtained by calculating the Hessian matrix
as follows:

H (l) =
[

∂2l
∂θi∂θ j

]
=

n∑
i=1

yi.H
[
log it(pyi−1 )

]+
n∑

i=1

H
[
log(1 − pyi−1 )

]

=
⎡
⎣ ∂2l/∂ρ2 ∂2l/∂ρ∂β1 ∂2l/∂ρ∂β2

∂2l/∂β1∂ρ ∂2l/∂β1
2 ∂2l/∂β1∂β2

∂2l/∂β2∂ρ ∂2l/∂β2∂β1 ∂2l/∂β2
2

⎤
⎦ . (C1)

The first element of Eq. (C1) using the chain rule can be obtained as follows:

H
[
log it(pyi−1 )

] =
[

∂2

∂θu∂θv

log
(

pyi−1

1 − pyi−1

)]

=
{

1
pyi−1 (1 − pyi−1 )

[
2pyi−1 − 1

pyi−1 (1 − pyi−1 )

∂ pyi−1

∂θv

∂ pyi−1

∂θu
+ ∂2pyi−1

∂θu∂θv

]}
.(C2)
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We associate H[log it(pyi−1 )] on the value of yi−1 by the following notations:

H
[
log it(pyi−1 )

] =
{
H0
[
log it(pyi−1 )

]
if yi−1 = 0

H1
[
log it(pyi−1 )

]
if yi−1 = 0

(C3)

Using chain rule, the second element of Eq. (B1), i.e.H[log(1 − pyi−1 )] will be

=
[

∂2

∂θu∂θv

log
(
1 − pyi−1

)] = ∂

∂θv

(
∂ pyi−1

∂θu

)
1

pyi−1
− 1

=

⎡
⎢⎣ 1

(pyi−1
− 1)

∂2pyi−1

∂θu∂θv

− 1(
pyi−1

− 1
)2
(

∂ pyi−1

∂θu

)(
∂ pyi−1

∂θv

)⎤⎥⎦ . (C4)

Similar to Eq. (C3), we associate H[log(1 − pyi−1 )] on the value of yi−1 by the following
notations:

H
[
log(1 − pyi−1 )

] =
{
H0
[
log(1 − pyi−1 )

]
if yi−1 = 0

H1
[
log(1 − pyi−1 )

]
if yi−1 = 0

(C5)

The derivations of H0[log it(pyi−1 )] and H0[log(1 − pyi−1 )] are given as follows. Note that
if yi−1 = 0, we have

pyi−1 = 1
1 + eXiβ

(
eXiβ − ρe

1
2 (Xi+Xi−1)β

)
. (C6)

Then, if θu = θv = ρ:

∂ pyi−1

∂θu
= ∂ pyi−1

∂ρ
= −e

1
2 (Xi+Xi−1)β

1 + eXiβ
,
∂2pyi−1

∂θi∂θ j
= ∂2pyi−1

∂ρ2 = 0. (C7)

If θu = ρ and θv = β j; j = 1, 2:

∂2pyi−1

∂θu∂θv

=
− 1

2

(
x( j)
i + x( j)

i−1

)
e
1
2 (xi+xi−1)β(1 + exiβ) + x( j)

i exiβe
1
2 (xi+xi−1)β(

1 + exiβ
)2 , (C8)

where xi = [x0i , x1i ]. If θu = β j; j = 1, 2, we have:

∂ pyi−1

∂β j
= −x( j)

i exiβ

1 + exiβ
pyi−1 + 1

1 + exiβ
[
x( j)
i exiβ − ρ

2
(x( j)

i + x( j)
i−1)e

1
2 (xi+xi−1)β

]
. (C9)

It is obvious that when θu = β j; j = 1, 2 and θv = ρ, ∂2 pyi−1
∂θu∂θv

can be obtained according to
Equation (C8). In the next step, when θu = β j and θv = βk, we have

∂2pyi−1

∂θu∂θv

= exiβ

1 + exiβ

×
⎧⎨
⎩
x( j)
i x(k)

i − ρ

4

(
x( j)
i + x( j)

i−1

) (
x(k)
i + x(k)

i−1

)
e
1
2 (xi−1−xi)β−

x(k)
i

1+exiβ

[
x( j)
i exiβ − ρ

2 (x( j)
i + x( j)

i−1)e
1
2 (xi+xi−1)β

]
− x( j)

i x(k)
i

1
1+exiβ

pyi−1 − x( j)
i

∂ pyi−1
∂βk

⎫⎬
⎭ .

(C10)
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Now, determining the values of H1[log it(pyi−1 )] and H1[log(1 − pyi−1 )] are discussed as
follows. Recall that if yi−1 = 1, we have

pyi−1 = 1
1 + eXiβ

(
eXiβ + ρe

1
2 (Xi−Xi−1)β

)
. (C11)

If θu = θv = ρ, then

∂ pyi−1

∂θu
= ∂ pyi−1

∂ρ
= e

1
2 (Xi−Xi−1)β

1 + eXiβ
,
∂2pyi−1

∂θi∂θ j
= ∂2pyi−1

∂ρ2 = 0. (C12)

Now when θu = ρ and θv = β j; j = 1, 2, we have

∂2pyi−1

∂θu∂θv

=
1
2

(
x( j)
i − x( j)

i−1

)
e
1
2 (xi−xi−1)β(1 + exiβ) − x( j)

i exiβe
1
2 (xi−xi−1)β(

1 + exiβ
)2 . (C13)

Consider θu = β j; h = 1, 2, then

∂ pyi−1

∂β j
= −x( j)

i exiβ

1 + exiβ
pyi−1 + 1

1 + exiβ
[
x( j)
i exiβ + ρ

2
(x( j)

i − x( j)
i−1)e

1
2 (xi−xi−1)β

]
. (C14)

Finally, when θu = β j; j = 1, 2 and θv = βk; k = 1, 2, the following equation is obtained:

∂2pyi−1

∂θu∂θv

= exiβ

1 + exiβ

×
⎧⎨
⎩
x( j)
i x(k)

i + ρ

4

(
x( j)
i − x( j)

i−1

) (
x(k)
i − x(k)

i−1

)
e−

1
2 (xi+xi−1)β−

x(k)
i

1+exiβ

[
x( j)
i exiβ + ρ

2 (x( j)
i − x( j)

i−1)e
1
2 (xi−xi−1)β

]
− x( j)

i x(k)
i

1
1+exiβ

pyt−1 − x( j)
i

∂ pyi−1
∂βk

⎫⎬
⎭ .

(C15)

Eq. (C16) expressed the relationship between Hessian matrix of likelihood function and
covariance matrix of the estimated parameters:

− �Û
−1 = E [H(l)] , (C16)

where:

E [H(l)] = E

[
n∑

i=1

yi.H
[
log it(pyi−1 )

]+ n∑
i=1

H
[
log(1 − pyi−1 )

]]

=
n∑

i=1

E
[
yi.H

[
log it(pyi−1 )

]+ H
[
log(1 − pyi−1 )

]]

=
n∑

i=1

E
[
yi.H

[
log it(pyi−1 )

]]+
n∑

i=1

E
[
H
[
log(1 − pyi−1 )

]]
. (C17)

For ith; i = 1, . . . , n experimental setting, the value of E[yi.H[log it(pyi−1 )]] is related to
the valueof yi−1. Hence

E
[
yi.H

[
log it(pyi−1 )

]] = E
{
E
[
yi.H

[
log it(pyi−1 )|yi−1

]]}
= E

[
H
[
log it(pyi−1 )

]
.E
(
yi|yi−1

)]
. (C18)

According to Eq. (4), since yi|yi−1 follows a binary distribution with parameter
pyi−1 = P(yi = 1|yi−1), then we have E(yi|yi−1) = pyi−1 = P(yi = 1|yi−1). As a consequence,
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Eq. (C18) can be rewritten as follows:

E
[
H
[
log it(pyi−1 )

]
.pyi−1

]
= P(yi−1 = 1).H1

[
log it(pyi−1 )

]
.P(yi = 1|yi−1 = 1)

+ P(yi−1 = 0).H0
[
log it(pyi−1 )

]
.P(yi = 1|yi−1 = 0), (C19)

where P(yi−1 = 1) = exi−1β

1+exi−1β
and P(yi−1 = 0) = 1 − exi−1β

1+exi−1β
. Similarly

E
[
H
[
log(1 − pyi−1 )

]]=P(yi−1 = 1).H1
[
log(1 − pyi−1 )

]+ P(yi−1 = 0).H0
[
log(1 − pyi−1 )

]
(C20)
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