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ABSTRACT

The effect of parameters estimation on profile monitoring methods has
only been studied by a few researchers and only the assumption of a
normal response variable has been tackled. However, in some practical
situation, the normality assumption is violated and the response
variable follows a discrete distribution such as Poisson. In this paper, we
evaluate the effect of parameters estimation on the Phase Il monitoring
of Poisson regression profiles by considering two control charts, namely
the Hotelling’s T2 and the multivariate exponentially weighted moving
average (MEWMA) charts. Simulation studies in terms of the average
run length (ARL) and the standard deviation of the run length (SDRL)
are carried out to assess the effect of estimated parameters on the
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performance of Phase Il monitoring approaches. The results reveal that 62012;6

both in-control and out-of-control performances of these charts are
adversely affected when the regression parameters are estimated.

1. Introduction

In some statistical process monitoring applications, the quality of a product is characterized by
a functional relationship between a response variable and one or more explanatory variables.
Monitoring the stability of such relationships over time is referred to as profile monitoring. In
the literature, control charts to monitor different types of profiles are classified into two general
categories, namely Phase I and Phase II approaches. The purpose of the Phase I analysis is
to estimate the unknown regression parameters using the historical data set, while in Phase
I1, the main interest is to quickly detect the out-of-control situations. For more information
concerning profile monitoring approaches in Phases I and II, please refer to the review paper
by Woodall (2007), Zhang, Li, and Wang (2009), Noorossana, Saghaei, and Amiri (2011), Xu
etal. (2012), and Ghashghaei and Amiri (2017).

Previous evaluations of Phase IT monitoring approaches have assumed that the in-control
parameter values are known. However, in many real manufacturing on non-manufacturing
environments, the process parameters are rarely known and should be estimated through an
in-control data set in Phase I analysis. This issue can affect the performance of monitoring
approaches due to the extra variability of the estimators especially when only a few samples are
used during the Phase I analysis for estimating the process parameters. In other words, using
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estimated parameters to calculate the chart statistic when the control limits are designed for
known parameters can significantly deteriorate the performance of control charts. Examples
of researches concerning the effect of parameters estimation on the performance of differ-
ent control charts can be found in Chakraborti and Human (2006), Chakraborti and Human
(2008), Maravelakis and Castagliola (2009), Capizzi and Masarotto (2010), Zhang et al. (2011),
Castagliola and Wu (2012), Zhang et al. (2013), and Rakitzis and Castagliola (2016). For more
information concerning the effect of parameters estimation on the performance of different
control charts, please refer to the review papers by Jensen et al. (2006) and Psarakis, Vyniou,
and Castagliola (2014).

To the best of authors’ knowledge, only a few researches have published papers on the
effect of parameters estimation on profile monitoring approaches. As the first work in this
area, Mahmoud (2012) investigated the performance of three Phase II simple linear profile
approaches under estimated regression parameters in terms of the average run length (ARL)
and the standard deviation of the run length (SDRL) criteria. Based on standard deviation
of the average run length (SDARL) criterion, Aly, Mahmoud, and Woodall (2015) compared
the in-control performance of three Phase II simple linear profile monitoring approaches;
namely those provided by Kang and Albin (2000), Kim, Mahmoud, and Woodall (2003), and
Mahmoud, Morgan, and Woodall (2010) when the regression parameters are estimated. They
indicated that the method proposed by Kim, Mahmoud, and Woodall (2003) statistically out-
performs the other ones in terms of the SDARL values. Considering the ARL criterion, the
effect of estimated parameters on performance of EWMA-3 chart in Phase I analysis of simple
linear profiles is studied by Noorossana, Aminmadani, and Saghaei (2016). Using two types
of Phase I estimators, the effect of Phase I estimation on Phase II monitoring of processes with
profile data was studied by Chen, Birch, and Woodall (2016).

All the above-mentioned works concerning the effect of Phase I estimators on profile mon-
itoring approaches have assumed that the response variable follows a normal distribution
and the profiles are expressed as linear models. However, in real manufacturing and non-
manufacturing situations, the normality assumption of a response variable may be violated.
In such situations, the relationship between the response and the explanatory variable(s) can-
not be expressed by a linear relationship any longer. In this case, the generalized linear model
(GLM) is used when the response variable belongs to the family of exponential distributions
such as the binary, Poisson and Gamma distributions. Monitoring GLM-based profiles has
been studied by some researchers: Yeh, Huwang, and Li (2009), Shang, Tsung, and Zou (2011),
Amiri, Koosha, and Azhdari (2011), Amiri, Koosha, and Azhdari (2012), Paynabar and Yeh
(2012), Saghaeietal. (2012), Koosha and Amiri (2013), Soleymanian, Khedmati, and Mahlooji
(2013), Noorossana, Aminnayeri, and Izadbakhsh (2013), Shadman et al. (2015), Amiri et al.
(2015), Panza and Vargas (2016), Qi et al. (2016), Huwang et al. (2016), Amiri, Sogandi, and
Ayoubi (2016), Shadman et al. (2017), Maleki, Amiri, and Taheriyoun (2017b), and Maleki,
Amiri, and Taheriyoun (2017a).

To the best of our knowledge, there is no research in the context of profile monitoring that
studies how Phase I estimated parameters can affect the detection performance of control
charts in Phase II, where the possible outcomes have discrete nature. On the other hand, in
many statistical profile monitoring applications, the discrete response values are count data.
As an example, consider the number of agglomerates which are ejected from a volcano in suc-
cessive days. In this example, the count of agglomerates (the response variable) is a function
of the agglomerates diameters (the explanatory variable). The motivation of this paper is to
investigate the effect of estimated regression parameters on Phase II monitoring of Poisson
regression profiles. Simulation studies based on the in-control average run length (ARL) and
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the in-control standard deviation of the run length (SDRL,) are conducted to compare the in-
control performances of the Hotelling’s T? and MEWMA charts when estimated regression
parameters are used to construct the chart statistics. For both control charts, the minimum
number of Phase I sample data to ensure a predetermined value of ARL, is obtained. Also,
in order to decrease the rate of false alarms when the regression parameters are estimated,
the control limits of both charts are modified to reproduce the predetermined ARL,. Finally,
based on corrected control limits, the out-of-control performances of these charts to detect
sustained shifts in regression parameters are compared for both known and estimated param-
eters cases.

The structure of this paper is organized as follows: the Poisson regression model along
with two control charts for Phase II monitoring of Poisson regression profiles are briefly
described in Section 2. The proposed scheme to evaluate the effect of estimated parameters
on Phase II monitoring of Poisson regression profiles is described in Section 3. Simulation
studies are applied in Section 4 to assess how using estimated parameters to construct
chart statistics affects the in-control performance of both the Hotelling’s T2 and MEWMA
charts. In Section 5, two approaches are discussed to compensate for the adverse effect
of parameter estimation on the in-control performance of the extended charts. Then, in
Section 6, the detection performance of the charts mentioned in the case of parameter
estimation and known parameters are compared under different out-of-control scenarios
considering different number of Phase I reference data. Finally, several concluding remarks
and two recommendations for future studies are given in Section 7.

2. Phase Il monitoring of poisson regression profiles

Phase I monitoring of Poisson regression profiles is studied by Amiri, Koosha, and Azhdari
(2011), Amiri et al. (2015) and Maleki et al. (2017c). This section is organized in three parts.
In the first subsection, the Poisson regression model is described. Afterwards, two control
charts, namely the Hotelling’s T? and the MEWMA charts for Phase I monitoring of Poisson
regression profiles are explained in the second and third subsections, respectively.

2.1. Poisson regression model

Let X = (X, ..., X,) bea p x n matrix of explanatory variables where x; = (x;1, ..., x;,)7,
i=1,...,nLetalsoB = (Bi, ..., B,)T denote the vector of regression parameters and y; =
(Yj1s---»Yjn)T bethe vector of response variables for profile j = 1, 2, ... which is supposed
to follow a Poisson distribution with parameter A;, i = 1, ..., n. Note that, it is customary in

the literature that x; ; = 1 such that g, is the intercept of the model. To associate the Poisson
response variable to the value of the explanatory variables for the experimental setting i, the
log link function is used for each A;, i.e.

ri=exp(x{p), i=1,...,n (1)

2.2. Hotelling’s T? chart

Yeh, Huwang, and Li (2009) proposed five different Hotelling’s T charts to monitor logis-
tic regression profiles in Phase 1. The Hotelling’s T2 chart was also used by some authors
such as Amiri, Koosha, and Azhdari (2012), Koosha and Amiri (2013), and Maleki, Amiri,
and Taheriyoun (2017b) to monitor different types of GLM-based profiles. The Hotelling’s T*
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chart statistic for the Phase IT monitoring of Poisson regression profiles is given as:

T = (B, — B)"% (B, — By). j=12..... @

where f, and X, are the in-control mean vector and variance-covariance matrix of the regres-
sion parameters, respectively, and B; = (B;1, ..., Bj,)7 is the vector of estimated regression
parameters for profile j. Note that the parameter estimation procedure by iterative weighted
least square (IWLS) method to obtain B j is detailed in Sharafi, Aminnayeri, and Amiri
(2013). The in-control variance-covariance matrix of the regression parameters is obtained
as:

¥ = XWXT) !, (3)

where W = diag(A4, Az, ..., A,). The control chart triggers an out-of-control signal for pro-
file j=1,2,...1if sz > hr, where hr is selected such that a predetermined ARL, value is
achieved.

2.3. MEWMA chart

Zou, Tsung, and Wang (2007) proposed a Multivariate Exponentially Weighted Moving Aver-
age (MEWMA) chart for Phase II monitoring of general linear profiles. Then, Soleymanian,
Khedmati, and Mahlooji (2013) used this approach to monitor GLM profiles in the case of
binary response data. Here, in order to monitor the Poisson regression profile for sample point
j=1,2,..., the following p x 1 vector has to be defined:

1 -~
z; = (XWXT)2 (ﬂj - Bo)- (4)
Then, the MEWMA chart statistic is written as follows:

where 6 € [0, 1] is a smoothing constant and wy, = 0. The control chart triggers an out-of-
control signal for profile j = 1,2, ...if wiw; > hg, where hg is set such that a predetermined
value of ARL, is obtained.

3. Effect of parameters estimation on monitoring poisson regression profiles

In order to investigate the effect of parameters estimation on the performance of the
Hotelling’s T2 and the MEWMA charts to monitor Poisson regression profiles, we suggest
to use the following approach:
1. Assume that the parameters 8 = (B, ..., B,)T are known and, based on 10000 repli-
cations, select the values of hy (for the Hotelling’s T2 chart) and hg (for the MEWMA
chart) such that the ARL, ~ 200.
2. Generate m Poisson regression profiles based on the known parameters. R
3. For each sample generated in Step 2, compute the estimated vector B, =

~ ~ J
Bis--sBiphj=1,...,m.

=

4. Compute the vector f = #Z;’;lﬁj and W = diag(’)tl,/)zz, . ,/):n) where ii =

exp(xfﬁ), i=1,...,n. Then,set RL = 1.
5. Generate a random Poisson profile based on the known parameters.
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6. Compute the value of the Hotellings T> and MEWMA statistics based on the

vector of estimated parameters ’B and matrix W obtained in Step 4 and com-
pare them with the values of the control limits hr and hp obtained in Stgp
The statistics for the Hotellings T2 and the MEWMA charts are T2 B; —

B) Z (ﬂ ﬁ) and z; = (XWXT) (ﬂ }3) respectively, with Eo (XWXT) !
and W = dlag(kl, kz, .. k n).

7. If the values of the computed statistics in Step 6 are equal to or smaller than the corre-
sponding control limits, then set RL = RL + 1 and go to Step 5; Otherwise, go to Step
8 if the value of the statistic is larger than the control limit.

8. Record the value of run length and go to Step 2.

Steps 2-8 are repeated 10000 times in order to obtain the average of the in-control run
length values for several values of m.

4. Simulation studies

In this section the effect of estimated regression parameters on the performance of the
Hotelling’s T> and MEWMA charts for monitoring Poisson regression profiles is assessed
through simulation experiments. Without loss of generality, it is assumed that when the pro-
cess is in-control, A; = exp{B; + Box;}, i =1, ..., n where f; = 3 and B, = 2. As in Amiri
etal. (2015), the vector of explanatory variables, which is fixed for each sample, is considered
as X = (0.1,0.2,...,0.9). Also, three possible outcomes for the smoothing constant of the
MEWMA chart have been selected, namely 6 € {0.05, 0.1, 0.2}. Based on 10000 simulation
runs, we have obtained hr = 10.8724 (for the Hotelling’s T? chart) and hr = 0.1945, 0.4644
and 1.0889 (for the MEWMA chart) when 6 = 0.05, 0.1 and 0.2, respectively, in order to have
ARL, ~ 200. Based on Equation (3), the variance-covariance matrix of the Poisson regression
parameters is obtained as:

5 ( or  poyop ) B ( 0.0141 —0.0196)
= b L =
po; 04 o 0.0196 0.0314
Table 1 presents the ARL, and SDRL, values of the Hotelling’s T> and MEWMA charts
for the estimated parameters case under different values of m. Note that the value of m = co
given in the last column of Table 1 implies that the control charts are constructed using the
known regression parameters. Table 1 shows that using the estimated regression parameters

to calculate the charts statistics when the control limits are set based on the known parameters
can strongly affect the in-control performance of both the Hotelling’s T? and MEWMA charts.

Table 1. ARL, and SDRL, values for different values of m.

Chart criterion 5 7 10 15 20 30 40 50 70 00

ARL 123540 137.074 152293 164.994 173.523 184.625 189.513 193.653 196.916 199.802
Hotelling’s T2 SDRL 148.492 156.115 169.519 171.816 181.412 189.172 193.753 198.796 205395 200.340

MEWMA 6 = 0.05 ARL 39.187 46.920 55595 70942 80.776 93108 106.485 115531 127.259 201.662
SDRL 58327 65.094 76906 89.287 99.028 102439 112.807 126.545 126.703 188.818
MEWMA 6 =0.1 ARL 43457 52033 61315 75100 87277 106.648 116.022 125.093 138.079 199.299
SDRL 68.749 75.855 82.837 90.018 103326 119.593 127.633 134.736 136.480 194.651
MEWMA 6 =0.2 ARL 49430 59.438 74.023 91.547 100.482 119.639 132.053 139.350 154.382 199.067
SDRL 78973 85725 102.902 113.337 119.203 134.833 143.405 150.546 161.940 194.797
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The results in Table 1 indicate that the effect of the estimated parameters on the MEWMA
chart is stronger than on the Hotelling’s T2 chart, in terms of the ARL, metric. For example,
when m = 15, we have ARL; = 164.994 for the Hotelling’s T* chart, while for the MEWMA
chart we have ARL;, = 70.942, 75.100 and 91.547 when 6 = 0.05, 0.1 and 0.2, respectively.
However, in the case of estimated parameters, the SDRL, values of the MEWMA chart are
smaller than the one of the Hotelling’s T? chart. In addition, it can be seen that for all values
of parameter m, the MEWMA chart for & = 0.2 is the least affected one compared to the other
values of parameter 6. In general, we can conclude that as the value of the smoothing constant
0 increases, the effect of the parameters estimation on the performance of the MEWMA chart
decreases in terms of the ARL, metric. For the MEWMA chart this trend is reversed when
the SDRL, metric is taken into consideration. In the other words, as the value of parameter 6
increases, the dispersion of the run length values will also increase. The trend in the results
of Table 1 is similar to that reported in Mahmoud (2012) which was carried out on linear
profiles. In other words, similar to linear profiles, for Poisson regression profiles, the ARL,
and SDRL, for m < oo are increasing when m increases but they are always smaller than ARL,
and SDRL, for m = ooc. It is worth mentioning here that, when m is small, the accuracy of the
estimated parameters is low. This makes the chart statistic falling outside the upper control
limit more quicker. Hence, the in-control run length values would be smaller than in the case
of known parameters. Consequently, selecting small values of m for estimating the regression
parameters leads to obtaining smaller ARL, and SDRL,, values.

5. Remedial measures

As seen in Section 4, constructing both Hotelling’s T2 and MEWMA statistics based on esti-
mated parameters adversely affects the in-control performances of these charts. To overcome
the mentioned issue, two procedures are presented in the following subsections to compensate
for the effect of estimated regression parameters on Phase II monitoring of Poisson regression
profiles.

Table 2. Values of (m, ARL,) for different value of A.

A
Chart 80% 85% 90% 95%

Hotelling’s T2 (14,163.076) (18,170.668) (26,181.919) (42,191.419)
MEWMA 6 =0.05 (165,163.695) (225,170.331) (300,181.701) (490,192.398)
6=01 (140,164.786) (180,172.182) (220,181.569) (405,195.790)
0=02 (90,160.566) (125,172.296) (200,182.640) (275,190.898)

Table 3. Values of UCL to achieve ARL, = 200.
m

Chart 5 7 10 15 20 30 40 5 70 90 140 165 oo

T2 11,9599 11.7224 11.4724 11.2849 11.2224 11.0724 10.9974 10.9724 10.9224 10.8849 10.8787 10.8763 10.8724

MEWMA 6 = 0.05 0.3655 0.3381 0.3203 0.2945 0.2788 0.2598 0.2493 0.2414 0.2320 0.2221 0.2133 0.2086 0.1945
MEWMA 6 = 0.1 07410 0.7015 0.6582 0.6269 0.6004 0.5707 0.5495 0.5332 0.5176 0.5043 0.4927 0.4877 0.4644
MEWMA 6 = 0.2 15264 14678 14014 13264 12920 12389 12100 1.1889 11639 11451 11264 11170 1.0889
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Table 4. ARL, values for different shifts from g, to B, + 6,0, .
1

&
m Chart 0.25 0.5 0.75 1 1.25 15 175 2
10 T2 146.402 38.555 9.223 3271 1712 1202 1.046 1.006
MEWMA 0 =0.05 48.812 1139 6.744 4.950 3.949 3313 2.948 2.579
MEWMA 6 =0.1 46.466 9.326 5.216 3793 3.019 2.504 2.170 2.016
MEWMA 0 =02 56.759 9.018 4.290 3.014 2365 2.034 1.842 1599
30 T2 132141 30.655 7.852 2,928 1593 1168 1.038 1.004
MEWMA 0 = 0.05 24.832 9.420 5.945 4.420 3.550 3.034 2.659 2.251
MEWMA # =0.1 25.516 7779 4.763 3.498 2.803 2326 2.066 1.987
MEWMA 0 =02 30.674 7.005 3.906 2799 2.244 1.959 1727 1.446
50 T2 126.025 27.202 7452 2.853 1.553 1150 1.032 1.005
MEWMA 0 =0.05 22.212 8.895 5726 4241 3435 2.950 2.553 2174
MEWMA 6 =0.1 21.712 7.369 4.593 3379 2718 2259 2.038 1.970
MEWMA 0 =02 26.089 6.682 3793 2.709 2178 1.918 1.689 1397
70 T2 124.160 26.609 7.202 2773 1.552 1142 1.031 1.004
MEWMA 6 =0.05 20.902 8.639 5.553 4175 3385 2913 2.481 2129
MEWMA 0 =0.1 20.903 7.205 4.474 3325 2,673 2224 2.026 1.964
MEWMA 0 =02 24.143 6.550 3735 2.682 2.167 1.907 1.664 1371
90 T2 124192 26.607 7.238 2.795 1.554 1.149 1.029 1.003
MEWMA 0 =0.05 20.019 8.462 5.448 4.087 3318 2.852 2.419 2.093
MEWMA 0 =0.1 19.409 7.088 4.409 3.287 2.639 2.212 2.020 1.947
MEWMA 9 =02 22.720 6.479 3.696 2.670 2154 1.899 1.653 1.348
140 T2 124191 26.561 7041 2.766 1.550 1148 1.031 1.004
MEWMA 0 = 0.05 19.254 8.245 5.349 4.013 3.249 2792 2.349 2.073
MEWMA 6 =0.1 18.925 7.082 4373 3.242 2,612 2.185 2.010 1.938
MEWMA 0 =02 22.705 6.475 3.662 2.654 2143 1.891 1.635 1328
165 T2 124182 26.346 7.114 2773 1548 1147 1.030 1.003
MEWMA 0 = 0.05 19.244 8.127 5.277 3.954 3.226 2775 2326 2.063
MEWMA # =0.1 18.922 7.012 4344 3.219 2.598 2.178 2.009 1.929
MEWMA 0 =02 22.654 6.465 3.661 2,615 2.143 1.878 1.624 1321
o] T2 124156 25.975 7.102 2762 1547 1141 1.020 1.003
MEWMA 0 =0.05 18.968 8.085 5.199 3.889 3.167 2.697 2.263 2.045
MEWMA 0 =0.1 18.835 6.946 4.298 3.179 2.558 2158 2.004 1.910
MEWMA 0 =02 22.646 6.428 3.660 2.61 2132 1.867 1.609 131

5.1. Increasing the size of the reference sample

As seen in Table 1, increasing the number m of reference data in Phase I analysis reduces
the effect of estimated regression parameters on the ARL, performance of both control
charts. Hence, increasing the number of reference data in Phase I analysis is recommended
in the literature to compensate for the effect of estimated parameters on the performance of
different control charts. However, in some cases, due to economical or other restrictions, it
is not possible to collect a large sample data set for estimating the process parameters. As
a consequence, it is important to determine the minimum number m of reference data in
Phase I to ensure a desired value of ARL,.

Here, through simulation studies, the minimum number m of reference data in Phase
I in order to have an ARL, value of at least A = 100 x (1 — W) percent for A €
{80%, 85%, 90%, 95%} are computed and listed in Table 2. As seen in Table 2, for each value
of A, the Hotelling’s T? chart needs a smaller number of Phase I sample data compared to
the MEWMA chart. For example, for the Hotelling’s T2 chart, using m = 26 reference data
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Table 5. SDRL, values for different shifts from g to g, + é,07 .
1

&
m Chart 0.25 0.5 0.75 1 125 15 175 2
10 T2 177.827 55226 1728 3.243 1.251 0.520 0.225 0.082
MEWMA 6 =0.05 167.252 5412 1.873 1.017 0.699 0.519 0.388 0.496
MEWMA 6 =01 121163 7.208 1.665 0.939 0.639 0.535 0378 0.154
MEWMA 6=02 138.306 12314 1775 0.917 0.565 0.358 0.391 0.490
30 T2 143.643 33.921 8.168 2.550 1.005 0.446 0.207 0.066
MEWMA 6 = 0.05 20.228 3.122 1386 0.845 0.618 0.424 0.487 0.433
MEWMA 6 =01 30.114 3.059 1320 0.796 0.563 0.477 0.256 0.151
MEWMA 6 =02 41.637 3.765 1380 0.776 0.499 0341 0.453 0.497
50 T2 133.505 28.435 7418 2337 0.935 0.415 0.180 0.071
MEWMA 6 = 0.05 14.156 2743 1304 0.798 0.577 0.428 0.503 0.379
MEWMA 6=0.1 19.682 2.802 1262 0.747 0.575 0.445 0.217 0.187
MEWMA 6=0.2 26.380 3.403 1.296 0.729 0.455 0.361 0.466 0.489
70 T2 130.982 28.387 6.900 2.286 0.938 0.398 0.174 0.063
MEWMA 6 = 0.05 12.088 2.587 1.252 0.793 0.568 0.429 0.503 0.335
MEWMA 6 =0.1 15.453 2.627 1213 0.738 0.573 0.422 0.188 0.191
MEWMA 6 =02 23.272 3.142 1.251 0.718 0.450 0.363 0.475 0.483
90 T2 132.859 27.244 6.937 2270 0.921 0.418 0.174 0.061
MEWMA 6 =0.05 10.966 2.565 1203 0.784 0.554 0.453 0.496 0.291
MEWMA 6 =0. 13.634 2.588 1181 0.723 0.570 0.413 0.194 0.232
MEWMA 6=0.2 20.319 3.048 1226 0.719 0.443 0.372 0.479 0.476
140 T2 132.281 27.790 6.662 2.249 0.933 0.421 0.178 0.070
MEWMA 6 =0.05 9.802 2.450 1.201 0.765 0.535 0.473 0.479 0.261
MEWMA 6 =01 12.315 2494 1163 0.701 0.562 0.393 0.186 0.246
MEWMA 6=02 17.931 2.908 1216 0.719 0.441 0.381 0.483 0.469
165 T2 131.243 26.503 6.580 2.250 0.902 0.414 0.178 0.062
MEWMA 6 = 0.05 9.248 2.406 1195 0.759 0.528 0.479 0.469 0.244
MEWMA 6 =01 11.908 2493 1141 0.707 0.564 0.388 0.185 0.260
MEWMA 6 =02 17.532 2.903 1178 0.695 0.449 0.391 0.486 0.467
00 T2 132.637 27.47 6.850 2358 0.950 0.423 0.191 0.061
MEWMA 6 = 0.05 8.946 2384 1161 0.740 0.528 0.499 0.441 0.209
MEWMA 6=0.1 1155 2455 1133 0.700 0.556 0.372 0.176 0.289
MEWMA 6 =0.2 16.850 2.978 1199 0.691 0.458 0.394 0.488 0.463

to estimate the regression parameters can result in 90% of the desired ARL, value. This per-
centage can only be achieved for MEWMA chart by using m = 300, 220 and 200 samples
when 6 = 0.05, 6 = 0.1 and 6 = 0.2, respectively. In addition, for the MEWMA chart, as 0
increases, the number of Phase I reference data that is needed to ensure a predetermined value
of ARL, decreases.

5.2. Modifying the control limits

As seen in Tables 1 and 2, the ARL, performances of the Hotelling’s T and the MEWMA
charts for estimated parameters improve as the number m of Phase I sample data increases.
However, in some practical applications, it is not possible to wait too long for collecting a
sufficiently large data set to achieve a desired ARL, value. Hence, in such situations, it is
important to reduce the rate of false alarms without collecting a large Phase I sample data
set. Here, through simulation experiments, the modified control limits of both charts are
computed to have a predetermined ARL, value. The modified control limits of the Hotelling’s
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Table 6. ARL, values for different shifts from B, to B, + 8,075 .
2

5
m Chart 0.25 0.5 0.75 1 125 15 175 2
10 T2 136.658 38.240 9.21 3304 1.682 1192 1.043 1.006
MEWMA 0 = 0.05 44.483 10.951 6.722 4.909 3.136 3303 2.939 2.591
MEWMA 0 =01 45.622 9171 5.235 3772 3.028 2.501 2.154 2,012
MEWMA 0 =02 55.735 8.842 4.265 3.005 2360 2.038 1.853 1583
30 T2 120.542 29.173 7536 2.869 1562 1152 1.032 1.005
MEWMA 0 = 0.05 24.752 9.349 5.930 4397 3.557 3.033 2.655 2234
MEWMA 0 =01 25.083 7.679 4.697 3.503 2.812 2326 2.066 1.990
MEWMA 0 =02 29.825 7.049 3.915 2788 2237 1.953 1720 1.436
50 T2 18.197 27.500 7194 2.815 1547 1150 1.032 1.004
MEWMA 6 = 0.05 22.372 8.845 5.700 4.250 3.429 2941 2534 2158
MEWMA 6 =01 21.659 7329 4.532 3371 2715 2.255 2.035 1.97
MEWMA 0 =0.2 25.536 6.568 3781 2.706 2.189 1.925 1.683 1385
70 T2 16.110 26.791 751 2754 1.551 1.154 1.026 1.004
MEWMA 6 = 0.05 20.996 8.656 5.554 4.146 3.368 2.885 2478 219
MEWMA 6 =0.1 20.158 7.228 4.482 3330 2.678 2.231 2.031 1.955
MEWMA 0 =02 23.864 6.447 3730 2.673 2.157 1.919 1.665 1354
90 T2 116.106 26.786 7139 2.763 1.552 1.156 1.028 1.004
MEWMA 0 = 0.05 20.083 8.393 5.443 4.077 3.299 2.836 241 2.092
MEWMA 0 =0.1 19.308 7.052 4.400 3.269 2.629 2.200 2.021 1.951
MEWMA 0 =02 22.752 6.402 3.673 2.643 2.157 1.896 1.641 1.340
140 T2 116.105 26.784 7.116 2.762 1.550 1.150 1.026 1.004
MEWMA 0 = 0.05 19.136 8.182 5.292 3.983 3.250 2797 2353 2.069
MEWMA 6 =01 18.599 6.971 4341 3.245 2.600 2.189 2.014 1.936
MEWMA 6=02 22418 6.343 3.644 2.640 2137 1.882 1.631 1321
165 T2 116.021 26.708 7.099 2760 1544 1154 1.025 1.003
MEWMA 0 = 0.05 18.807 8.116 5.270 3.944 3.215 2.760 2315 2.056
MEWMA 0 =01 18.496 6.880 4321 3228 2.587 2.176 2.0M 1.938
MEWMA 6=02 22.400 6.297 3.637 2,627 2133 1.882 1.615 1309
o] T2 116.005 26.629 7.09 2754 1546 1150 1.020 1.002
MEWMA 6 = 0.05 18.746 7.985 5.143 3.869 3.136 2.683 2.245 2.036
MEWMA 6 =01 18.587 6.823 4.286 3N 2556 2144 1.997 1.906
MEWMA 0=0.2 21.475 6.297 3.623 2,612 2.126 1.869 1594 1.290

T? and MEWMA charts to achieve ARLy &~ 200 are summarized in 3. Table 3 shows that
for both charts, decreasing the number of Phase I samples leads to wider control limits. For
instance, for the Hotelling’s T? chart, in order to achieve ARL, & 200 for m = 5, we need to
widen the control limit by about 10% while, for m = 70 the control limit only needs to be
widened by about 0.5%.

6. Detecting out-of-control shifts in the case of parameter estimation

In this section, using the same data set as in Sections 4 and 5, the effect of parameters esti-
mation on the performance of the Hotelling’s T2 and MEWMA charts to detect different step
changes in the regression parameters is investigated. Simulation experiments are carried out
to compare the performances of these methods, in terms of the out-of-control ARL (ARL;)
and out-of-control SDRL (SDRL,) criteria. To have a fair comparison for each value of param-
eter m, the ARL, value of the competing charts must be the same. Hence, to obtain the values
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Table 7. SDRL, values for different shifts from B, to 8, + é,075 .
2

5
m Chart 0.25 0.5 0.75 1 125 15 175 2
10 T2 164.151 55.445 11153 3302 1.194 0.515 0.223 0.079
MEWMA 6 = 0.05 137.274 5.638 1.856 1.009 0.703 0.512 0.384 0.495
MEWMA 0 =01 man 7.092 1.705 0.899 0.615 0.531 0.363 0.144
MEWMA 6=0.2 130.711 8.761 1756 0.891 0.562 0.352 0375 0.494
30 T2 131.846 33.037 7.697 2.463 0.976 0.428 0.181 0.076
MEWMA 0 = 0.05 21.287 3.079 1378 0.833 0.610 0.420 0.488 0.423
MEWMA 0 =01 29.291 3.085 1.288 0.782 0.579 0.476 0.254 0.136
MEWMA 6 =02 40.438 3.804 1352 0.754 0.496 0.343 0.454 0.496
50 T2 125.568 28.688 7192 2327 0.927 0.419 0.181 0.069
MEWMA 6 = 0.05 14.589 2.667 1324 0.798 0.589 0.419 0.502 0.365
MEWMA 6=0.1 18.494 2778 1212 0.742 0.570 0.445 0.208 0.183
MEWMA 0=0.2 25.167 3.232 1278 0.728 0.460 0.354 0.469 0.486
70 T2 121304 27.716 6.882 221 0.938 0.427 0.166 0.064
MEWMA 6 = 0.05 11.816 2.587 1234 0.778 0.552 0.436 0.502 0.324
MEWMA 6 =0.1 14.853 2.658 1186 0.731 0.582 0.426 0.193 0.21
MEWMA 0 =02 23.139 3.099 1.247 0.720 0.443 0.361 0.474 0.478
90 T2 121.230 27.636 6.821 2.253 0.930 0.431 0.163 0.061
MEWMA 6 = 0.05 10.807 2422 1218 0.778 0.543 0.458 0.493 0.289
MEWMA 6 =0.1 13.243 2.541 1175 0.708 0.558 0.404 0.189 0.222
MEWMA 0 =02 20.091 3.064 1203 0.705 0.447 0.375 0.481 0.474
140 T2 1211m 27.276 6.642 2144 0.919 0.417 0.165 0.061
MEWMA 6 = 0.05 9.542 2362 1187 0.760 0.534 0.468 0.479 0.253
MEWMA 6 =01 11793 2.5M 1175 0.709 0.557 0.396 0.175 0.247
MEWMA 6=02 18.023 3.000 1220 0.702 0.432 0.385 0.484 0.467
165 T2 120.209 26.114 6.853 2220 0.912 0.431 0.174 0.056
MEWMA 6 = 0.05 9.299 2383 1176 0.754 0.524 0.482 0.465 0.231
MEWMA 0 =01 11.582 2.440 1.166 0.715 0.560 0.384 0.181 0.244
MEWMA 6 =02 17.353 2.978 1174 0.705 0.438 0371 0.488 0.462
00 T2 120.092 26.788 6.771 2185 0.918 0.417 0.173 0.048
MEWMA 6 = 0.05 8.767 2.283 1155 0.752 0.512 0.505 0.430 0.187
MEWMA 6 =01 1.077 2.409 1164 0.691 0.549 0.356 0.188 0.295
MEWMA 0=0.2 16.253 2.875 1177 0.690 0.431 0.384 0.492 0.454

of ARL, and SDRL, for each value of m, the UCL values summarized in Table 3 are used and
substituted in Step 1 of the method presented in Section 3. The out-of-control performances
of the Hotelling’s T> and MEWMA charts under different step changes, in terms of ARL; and
SDRL,; are compared in Tables 4-9 for m € {10, 30, 50, 70, 90, 140, 165, co}. Recall that the
last four rows in Tables 4-7 imply that the ARL; and SDRL, values are obtained based on
known parameters.

Table 4 contains the ARL; values under different shift magnitudes for the intercept param-
eter in units of 03 . As seen in Table 4, the estimated parameters to calculate the chart statis-
tics adversely affect the detecting performance of both charts in terms of ARL;. As expected,
the results of the four last columns given in Table 4 show that in the case of known regres-
sion parameters, the MEWMA chart outperforms the Hotelling’s T chart for small shifts
8, € {0.25, 0.5, 0.75, 1}, while for large shifts §; € {1.25, 1.5, 1.75, 2}, the performance of the
Hotelling’s T chart is better than that of the MEWMA chart. It can be seen that, similar results
are obtained when the chart statistics are calculated using estimated regression parameters for
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each value of m € {10, 30, 50, 70, 90, 140, 165}. Moreover in most out-of-control scenarios,
the results confirm that for the MEWMA chart, selecting & = 0.2 leads to the best perfor-
mance of this chart to detect different shifts for different values of the parameter m. From
Table 4 we can conclude that by increasing the number m of Phase I reference data, smaller
ARL, values are obtained. For example, for the Hotelling’s T? chart for §, = 0.5, increasing
the value of m from 10 to 70, decreases the ARL; from 38.555 to 26.609. Taking into account
the SDRL; metric, we can conclude from the results of Table 5 that for both control charts,
increasing the number m of Phase I reference data, m, decreases the dispersion of the run
length values.

The ARL, and SDRL, values of the Hotelling’s T? and MEWMA charts to detect different
shifts in the slope parameter in units of o3 are summarized in Tables 6 and 7, respectively. The
simulated results imply that designing the chart statistics based on the estimated regression
parameters reduces the capability of both control charts to detect sustained shifts in the slope
parameter, in terms of both ARL,; and SDRL; metrics. However, increasing the number of
Phase I reference data improves the detection performance of both control charts, in terms of

Table 8. ARL, values for joint shifts from (8,, B,) to (B, + 6,04 , B, + 6,05 ).
1 2

(8, 8,)
m Chart (025,025 (0.250.5) (0.251) (05025 (0505 (051 (1,025 (1,05) (1))
10 T2 38.834 9.895 1726 10.079 3.476 1220 1696 1212 1.009
MEWMA 6 = 0.05 1.423 6.843 3.993 6.897 5.017 3367 3984 3360 2.629
MEWMA 6 =0.1 9.612 5320 3.049 5299 3.845 2552 3.056 2564 2.028
MEWMA 6 =0.2 8.977 4.435 2379 4.450 3.066 2057 2391 2061 1625
30 T2 31.090 7.964 1.621 8.142 3.109 1.184 1638 1182  1.006
MEWMA 6 = 0.05 9.488 6.013 3.595 6.006 4489  3.073 3,605 3.069 2297
MEWMA 6 =0.1 7.989 4.820 2.839 4.832 3.556 2363 2841 2368 1991
MEWMA 6 =0.2 7.255 3.958 2.240 3.980 2.847 1975 2257 1979 1493
50 T2 28.921 7.869 1.585 7.818 2.939 1.164 1.578 1181 1.005
MEWMA 6 = 0.05 9.115 5770 3.446 5776 4.320 2983 3475 2986 2207
MEWMA 6 =0.1 7.557 4.632 2742 4.599 3413 2279 2738 2284 1978
MEWMA 6 =0.2 6.774 3.854 2.212 3.852 2.766 1.944 2207 1.948 1425
70 T2 28.124 7.648 1.586 7.642 2.928 1.164 1.607 1175  1.005
MEWMA 6 = 0.05 8.841 5.652 3.415 5.659 4.233 2947 3405 2925 2163
MEWMA 6 =0.1 7373 4.581 2.692 4.601 3.388 2252 2695 2259 1967
MEWMA 6 =0.2 6.601 3778 2.183 3.834 2726 1930 2194 1928 1397
90 T2 28132 7392 1578 7798 2.898 1169 1607 1172 1.005
MEWMA 6 = 0.05 8.557 5.513 3.345 5.533 4167 2883 3339 2879 2125
MEWMA 6 =0.1 7.216 4.492 2.655 4.476 3326 2229 2657 2236 1.960
MEWMA 6 =0.2 6.575 3768 21N 3.779 2.710 1917 2175 1922 1375
140 T2 28.126 7517 1566 7.683 2.883 1166 1605 1173 1.005
MEWMA 6 = 0.05 8.385 5.405 3.282 5.430 4.074 2832 3279 2828 2.092
MEWMA 6 =0.1 7.118 4433 2,628 4.426 3.295 221 2639 2214 1951
MEWMA 6 =0.2 6.450 3726 2.155 3.709 2.683 1904 2159 1907 1369
165 T2 28.113 7.478 1.560 7.617 2.897 1.170 1.604 1171 1.005
MEWMA 6 = 0.05 8.281 5338 3.248 5341 4.027 2799 3259 2808 2.089
MEWMA 6 =0.1 7.080 4.385 2.620 4.399 3.281 2210 2623 2204 1948
MEWMA 6 =0.2 6.442 3.684 2.159 3.691 2.661 1903 2154 1903 1359
o] T2 28.103 7.643 1.580 7.584 2.926 1159 1599 117 1.004
MEWMA 6 = 0.05 8.135 5.258 3.179 5.244 3.931 2727 3189 2727 2048
MEWMA 6 =0.1 7.084 4.381 2.574 4379 3.244 2.183 2580 2179  1.924

MEWMA 6 =0.2 6.442 3704 2.148 3.712 2.686 1.882 2146 1.894 1339




COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 1975

Table 9. SDRL, values for joint shifts from (B,, B,) to (B; + 8,0 , B, + 8,05 ).
1 2

(8,8,)
m Chart (0.25,0.25)  (0.25,0.5) (0.25,1) (0.5,0.25) (0.5,0.5) (0.51) (1,0.25) (1,0.5) 1,1)
10 T2 53.846 12.706 1398 13.355 3.607 0.554 1186 0.543  0.100
MEWMA 6 =0.05 8.402 1.902 0.714 1.947 1.068 0.550 0.728 0.544 0.493
MEWMA 6 =0.1 7.549 1.767 0.633 1713 0.937 0.542 0.631 0.546 0.179
MEWMA 6 =0.2 8.772 1.958 0.568 1.928 0.939 0.370 0.582 0369 0484
30 T2 34972 8.255 1.078 8.805 2.710 0.473 1.009 0478 0.079
MEWMA 6 =0.05 3.115 1.406 0.620 1413 0.849 0.430 0.619 0.444 0457
MEWMA 6 =0.1 3374 1342 0.581 1349 0.818 0.492 0.592 0493 0.146
MEWMA 6 =0.2 4.105 1433 0.488 1.418 0.791 0.345 0.496 0347 0.500
50 T2 31.166 7.666 0.965 7721 2412 0.437 0.945 0.465 0.075
MEWMA 6 = 0.05 2.843 1.310 0.595 1341 0.834 0.431 0.584 0.443 0.405
MEWMA 6 =0.1 2942 1.276 0.576 1.236 0.774 0.453 0.581 0459 0.167
MEWMA 6 =0.2 3423 1335 0.467 1336 0.750 0.358 0.475 0348 049
70 T2 28.990 7.527 0.956 7.401 2503 0.450 1.006 0.452  0.075
MEWMA 6 = 0.05 2.687 1.280 0.571 1.289 0.806 0.430 0.574 0430 0.369
MEWMA 6 =0.1 2.760 1.246 0.580 1.261 0.757 0.440 0.573 0442 0.194
MEWMA 6 =0.2 3314 1.301 0.457 1332 0.734 0.348 0.466 0363 0.489
90 T2 28.964 7.522 0.965 7.405 2.5M 0.452 1.013 0435 0.068
MEWMA 6 =0.05 2.561 1.246 0.563 1.262 0.803 0.451 0.562 0459 0331
MEWMA 6 =0.1 2.639 1.208 0.566 1.209 0.742 0.426 0.570 0.431 0.207
MEWMA 6 =0.2 3.187 1.262 0.457 1.261 0.734 0.382 0.463 0367 0.484
140 T2 28.931 7.476 0.948 7349 2451 0.436 1.017 0.455 0.074
MEWMA 6 =0.05 2.509 1.217 0.544 1.229 0.773 0.460 0.546 0.469 0.290
MEWMA 6 =0.1 2.593 1.208 0.572 1180 0.736 0.413 0.574 041 0.224
MEWMA 6 =0.2 3.073 1241 0.455 1.262 0.735 0.371 0.462 0378 0.483
165 T2 28.679 7.386 0.951 7.313 2.509 0.450 1.008 0.454 0.073
MEWMA 6 = 0.05 2450 1199 0.539 1197 0.779 0.476 0.546 0470 0.284
MEWMA 6 =0.1 2.515 1.203 0.562 1190 0.731 0.413 0.568 0.407 0.230
MEWMA 6 =0.2 3.086 1.213 0.449 1.260 0.732 0.363 0.461 0376  0.480
o] T2 28.642 7.380 0.958 7.285 2.449 0.473 1.020 0.434 0.082
MEWMA 6 = 0.05 2443 1199 0.520 1192 0.763 0.502 0.534 0489 0216
MEWMA 6 =0.1 2.591 1.196 0.556 1179 0.734 0396 0564 0390 0.269
MEWMA 6 =0.2 2.954 1.222 0.452 1.254 0.727 0.397 0.455 0384 0473

both ARL; and SDRL; metrics. Table 6 shows that for each value of m, the performance of the
MEWMA chart to detect small shifts, §, € {0.25, 0.5, 0.75, 1} is better than the Hotelling’s T*
chart. However, for large shifts, §; € {1.25, 1.5, 1.75, 2} the Hotelling’s T* chart outperforms
the MEWMA chart.

Here the detecting performances of the Hotelling’s T and MEWMA charts, for dif-
ferent joint changes in the regression model parameters are compared in Tables 8 and 9.
Similar to the previous results, the results of Tables 8 and 9 indicates that the capability of
both methods in detecting joint shifts are adversely affected when the regression param-
eters are estimated. In the case of both known and estimated parameters, it is concluded
from Table 8 that the MEWMA chart outperforms the Hotelling’s T2 chart for small shifts
(61, 82) € {(0.25,0.25), (0.25, 0.5), (0.5, 0.25), (0.5, 0.5)} while, for other ones (large shifts)
the performance of the Hotelling’s T2 chart is better than for the MEWMA chart. In addition
the performance of the MEWMA chart under 6 = 0.2 is better than the other scenarios
for the smoothing parameter. As expected, under all joint shifts, as the number m of Phase
I reference data increases, the value of ARL, will decrease. It can be concluded from Table 9



1976 M. R. MALEKI ET AL.

that for both control charts increasing the number m of Phase I reference data, uniformly
decreases the SDRL, values.

7. Conclusions and future research

In this paper, the effect of using estimated regression parameters to design the chart statistics
for monitoring Poisson regression profiles has been evaluated. First of all, the effect of esti-
mated regression parameters on the ARL, and SDRL, performances of the Hotelling’s T and
MEWMA charts was assessed. The results showed that the in-control performance of both
control charts are adversely affected when the chart statistics are designed based on the esti-
mated regression parameters. At the second stage, the minimum number of Phase I reference
samples to fulfill a predetermined ARL, value has been obtained for both control charts. Then,
at the third stage, modified UCL values for both methods were computed to have ARL, =~ 200.
These modified UCL values were used at the fourth stage of our work to evaluate the effect of
estimated regression parameters on the out-of-control performance of the Hotelling’s T2 and
MEWMA charts. Two metrics, namely ARL, and SDRL,, were used to compare the detection
performance of these methods. The results of the fourth stage of our study revealed that the
out-of-control performances of both charts are seriously affected when the regression param-
eters are estimated. Monitoring autocorrelated Poisson regression profiles when the parame-
ters are estimated based on Phase I sample data is recommended in a future work. In addition,
taking into account the effect of parameter estimation to monitor logistic regression profiles
can be considered as another study in the future.
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