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ABSTRACT
The effect of parameters estimation on profile monitoring methods has
only been studied by a few researchers and only the assumption of a
normal response variable has been tackled. However, in some practical
situation, the normality assumption is violated and the response
variable follows a discrete distribution such as Poisson. In this paper, we
evaluate the effect of parameters estimation on the Phase II monitoring
of Poisson regression profiles by considering two control charts, namely
the Hotelling’s T 2 and the multivariate exponentially weighted moving
average (MEWMA) charts. Simulation studies in terms of the average
run length (ARL) and the standard deviation of the run length (SDRL)
are carried out to assess the effect of estimated parameters on the
performance of Phase II monitoring approaches. The results reveal that
both in-control and out-of-control performances of these charts are
adversely affected when the regression parameters are estimated.

1. Introduction

In some statistical processmonitoring applications, the quality of a product is characterized by
a functional relationship between a response variable and one or more explanatory variables.
Monitoring the stability of such relationships over time is referred to as profile monitoring. In
the literature, control charts tomonitor different types of profiles are classified into two general
categories, namely Phase I and Phase II approaches. The purpose of the Phase I analysis is
to estimate the unknown regression parameters using the historical data set, while in Phase
II, the main interest is to quickly detect the out-of-control situations. For more information
concerning profile monitoring approaches in Phases I and II, please refer to the review paper
by Woodall (2007), Zhang, Li, and Wang (2009), Noorossana, Saghaei, and Amiri (2011), Xu
et al. (2012), and Ghashghaei and Amiri (2017).

Previous evaluations of Phase II monitoring approaches have assumed that the in-control
parameter values are known. However, in many real manufacturing on non-manufacturing
environments, the process parameters are rarely known and should be estimated through an
in-control data set in Phase I analysis. This issue can affect the performance of monitoring
approaches due to the extra variability of the estimators especially when only a few samples are
used during the Phase I analysis for estimating the process parameters. In other words, using
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estimated parameters to calculate the chart statistic when the control limits are designed for
known parameters can significantly deteriorate the performance of control charts. Examples
of researches concerning the effect of parameters estimation on the performance of differ-
ent control charts can be found in Chakraborti and Human (2006), Chakraborti and Human
(2008),Maravelakis andCastagliola (2009), Capizzi andMasarotto (2010), Zhang et al. (2011),
Castagliola andWu (2012), Zhang et al. (2013), and Rakitzis and Castagliola (2016). Formore
information concerning the effect of parameters estimation on the performance of different
control charts, please refer to the review papers by Jensen et al. (2006) and Psarakis, Vyniou,
and Castagliola (2014).

To the best of authors’ knowledge, only a few researches have published papers on the
effect of parameters estimation on profile monitoring approaches. As the first work in this
area, Mahmoud (2012) investigated the performance of three Phase II simple linear profile
approaches under estimated regression parameters in terms of the average run length (ARL)
and the standard deviation of the run length (SDRL) criteria. Based on standard deviation
of the average run length (SDARL) criterion, Aly, Mahmoud, and Woodall (2015) compared
the in-control performance of three Phase II simple linear profile monitoring approaches;
namely those provided by Kang and Albin (2000), Kim, Mahmoud, andWoodall (2003), and
Mahmoud,Morgan, andWoodall (2010) when the regression parameters are estimated. They
indicated that the method proposed by Kim,Mahmoud, andWoodall (2003) statistically out-
performs the other ones in terms of the SDARL values. Considering the ARL criterion, the
effect of estimated parameters on performance of EWMA-3 chart in Phase I analysis of simple
linear profiles is studied by Noorossana, Aminmadani, and Saghaei (2016). Using two types
of Phase I estimators, the effect of Phase I estimation on Phase II monitoring of processes with
profile data was studied by Chen, Birch, and Woodall (2016).

All the above-mentioned works concerning the effect of Phase I estimators on profilemon-
itoring approaches have assumed that the response variable follows a normal distribution
and the profiles are expressed as linear models. However, in real manufacturing and non-
manufacturing situations, the normality assumption of a response variable may be violated.
In such situations, the relationship between the response and the explanatory variable(s) can-
not be expressed by a linear relationship any longer. In this case, the generalized linear model
(GLM) is used when the response variable belongs to the family of exponential distributions
such as the binary, Poisson and Gamma distributions. Monitoring GLM-based profiles has
been studied by some researchers: Yeh,Huwang, and Li (2009), Shang, Tsung, and Zou (2011),
Amiri, Koosha, and Azhdari (2011), Amiri, Koosha, and Azhdari (2012), Paynabar and Yeh
(2012), Saghaei et al. (2012), Koosha andAmiri (2013), Soleymanian,Khedmati, andMahlooji
(2013), Noorossana, Aminnayeri, and Izadbakhsh (2013), Shadman et al. (2015), Amiri et al.
(2015), Panza and Vargas (2016), Qi et al. (2016), Huwang et al. (2016), Amiri, Sogandi, and
Ayoubi (2016), Shadman et al. (2017), Maleki, Amiri, and Taheriyoun (2017b), and Maleki,
Amiri, and Taheriyoun (2017a).

To the best of our knowledge, there is no research in the context of profile monitoring that
studies how Phase I estimated parameters can affect the detection performance of control
charts in Phase II, where the possible outcomes have discrete nature. On the other hand, in
many statistical profile monitoring applications, the discrete response values are count data.
As an example, consider the number of agglomerates which are ejected from a volcano in suc-
cessive days. In this example, the count of agglomerates (the response variable) is a function
of the agglomerates diameters (the explanatory variable). The motivation of this paper is to
investigate the effect of estimated regression parameters on Phase II monitoring of Poisson
regression profiles. Simulation studies based on the in-control average run length (ARL0) and
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the in-control standard deviation of the run length (SDRL0) are conducted to compare the in-
control performances of the Hotelling’s T 2 and MEWMA charts when estimated regression
parameters are used to construct the chart statistics. For both control charts, the minimum
number of Phase I sample data to ensure a predetermined value of ARL0 is obtained. Also,
in order to decrease the rate of false alarms when the regression parameters are estimated,
the control limits of both charts are modified to reproduce the predetermined ARL0. Finally,
based on corrected control limits, the out-of-control performances of these charts to detect
sustained shifts in regression parameters are compared for both known and estimated param-
eters cases.

The structure of this paper is organized as follows: the Poisson regression model along
with two control charts for Phase II monitoring of Poisson regression profiles are briefly
described in Section 2. The proposed scheme to evaluate the effect of estimated parameters
on Phase II monitoring of Poisson regression profiles is described in Section 3. Simulation
studies are applied in Section 4 to assess how using estimated parameters to construct
chart statistics affects the in-control performance of both the Hotelling’s T 2 and MEWMA
charts. In Section 5, two approaches are discussed to compensate for the adverse effect
of parameter estimation on the in-control performance of the extended charts. Then, in
Section 6, the detection performance of the charts mentioned in the case of parameter
estimation and known parameters are compared under different out-of-control scenarios
considering different number of Phase I reference data. Finally, several concluding remarks
and two recommendations for future studies are given in Section 7.

2. Phase II monitoring of poisson regression profiles

Phase I monitoring of Poisson regression profiles is studied by Amiri, Koosha, and Azhdari
(2011), Amiri et al. (2015) and Maleki et al. (2017c). This section is organized in three parts.
In the first subsection, the Poisson regression model is described. Afterwards, two control
charts, namely the Hotelling’s T 2 and theMEWMA charts for Phase II monitoring of Poisson
regression profiles are explained in the second and third subsections, respectively.

2.1. Poisson regressionmodel

Let X = (x1, . . . , xn) be a p× nmatrix of explanatory variables where xi = (xi,1, . . . , xi,p)ᵀ,
i = 1, . . . , n. Let also β = (β1, . . . , βp)

ᵀ denote the vector of regression parameters and y j =
(y j,1, . . . , y j,n)

ᵀ be the vector of response variables for profile j = 1, 2, . . .which is supposed
to follow a Poisson distribution with parameter λi, i = 1, . . . , n. Note that, it is customary in
the literature that xi,1 = 1 such that β1 is the intercept of the model. To associate the Poisson
response variable to the value of the explanatory variables for the experimental setting i, the
log link function is used for each λi, i.e.

λi = exp(xᵀi β), i = 1, . . . , n (1)

2.2. Hotelling’s T 2 chart

Yeh, Huwang, and Li (2009) proposed five different Hotelling’s T 2 charts to monitor logis-
tic regression profiles in Phase I. The Hotelling’s T 2 chart was also used by some authors
such as Amiri, Koosha, and Azhdari (2012), Koosha and Amiri (2013), and Maleki, Amiri,
and Taheriyoun (2017b) to monitor different types of GLM-based profiles. The Hotelling’s T 2
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chart statistic for the Phase II monitoring of Poisson regression profiles is given as:

T 2
j = (̂β j − β0)

ᵀ�−1
0 (̂β j − β0), j = 1, 2, . . . , (2)

where β0 and�0 are the in-control mean vector and variance-covariancematrix of the regres-
sion parameters, respectively, and β̂ j = (β̂ j,1, . . . , β̂ j,p)

ᵀ is the vector of estimated regression
parameters for profile j. Note that the parameter estimation procedure by iterative weighted
least square (IWLS) method to obtain β̂ j is detailed in Sharafi, Aminnayeri, and Amiri
(2013). The in-control variance-covariance matrix of the regression parameters is obtained
as:

�0 = (XWXᵀ)
−1 , (3)

whereW = diag(λ1, λ2, . . . , λn). The control chart triggers an out-of-control signal for pro-
file j = 1, 2, . . . if T 2

j > hT , where hT is selected such that a predetermined ARL0 value is
achieved.

2.3. MEWMA chart

Zou, Tsung, andWang (2007) proposed aMultivariate ExponentiallyWeightedMoving Aver-
age (MEWMA) chart for Phase II monitoring of general linear profiles. Then, Soleymanian,
Khedmati, and Mahlooji (2013) used this approach to monitor GLM profiles in the case of
binary response data. Here, in order tomonitor the Poisson regression profile for sample point
j = 1, 2, . . . , the following p× 1 vector has to be defined:

z j = (XWXᵀ)
1
2 (̂β j − β0). (4)

Then, the MEWMA chart statistic is written as follows:

w j = θz j + (1 − θ )w j−1, (5)

where θ ∈ [0, 1] is a smoothing constant and w0 = 0. The control chart triggers an out-of-
control signal for profile j = 1, 2, . . . ifwᵀ

j w j > hE , where hE is set such that a predetermined
value of ARL0 is obtained.

3. Effect of parameters estimation onmonitoring poisson regression profiles

In order to investigate the effect of parameters estimation on the performance of the
Hotelling’s T 2 and the MEWMA charts to monitor Poisson regression profiles, we suggest
to use the following approach:

1. Assume that the parameters β = (β1, . . . , βp)
ᵀ are known and, based on 10000 repli-

cations, select the values of hT (for the Hotelling’s T 2 chart) and hE (for the MEWMA
chart) such that the ARL0 ≈ 200.

2. Generatem Poisson regression profiles based on the known parameters.
3. For each sample generated in Step 2, compute the estimated vector β̂ j =

(β̂ j,1, . . . , β̂ j,p)
ᵀ, j = 1, . . . ,m.

4. Compute the vector ¯̂
β = 1

m

∑m
j=1 β̂ j and Ŵ = diag(̂λ1, λ̂2, . . . , λ̂n) where λ̂i =

exp(xᵀi
¯̂
β), i = 1, . . . , n. Then, set RL = 1.

5. Generate a random Poisson profile based on the known parameters.
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6. Compute the value of the Hotelling’s T 2 and MEWMA statistics based on the
vector of estimated parameters ¯̂

β and matrix Ŵ obtained in Step 4 and com-
pare them with the values of the control limits hT and hE obtained in Step 1.
The statistics for the Hotelling’s T 2 and the MEWMA charts are T 2

j = (̂β j −
¯̂
β)ᵀ�̂

−1
0 (̂β j − ¯̂

β) and z j = (XŴXᵀ)
1
2 (̂β j − ¯̂

β), respectively, with �̂0 = (XŴXᵀ)−1

and Ŵ = diag(̂λ1, λ̂2, . . . , λ̂n).
7. If the values of the computed statistics in Step 6 are equal to or smaller than the corre-

sponding control limits, then set RL = RL + 1 and go to Step 5; Otherwise, go to Step
8 if the value of the statistic is larger than the control limit.

8. Record the value of run length and go to Step 2.
Steps 2–8 are repeated 10000 times in order to obtain the average of the in-control run

length values for several values ofm.

4. Simulation studies

In this section the effect of estimated regression parameters on the performance of the
Hotelling’s T 2 and MEWMA charts for monitoring Poisson regression profiles is assessed
through simulation experiments. Without loss of generality, it is assumed that when the pro-
cess is in-control, λi = exp{β1 + β2xi}, i = 1, . . . , n where β1 = 3 and β2 = 2. As in Amiri
et al. (2015), the vector of explanatory variables, which is fixed for each sample, is considered
as X = (0.1, 0.2, . . . , 0.9). Also, three possible outcomes for the smoothing constant of the
MEWMA chart have been selected, namely θ ∈ {0.05, 0.1, 0.2}. Based on 10000 simulation
runs, we have obtained hT = 10.8724 (for the Hotelling’s T 2 chart) and hE = 0.1945, 0.4644
and 1.0889 (for theMEWMA chart) when θ = 0.05, 0.1 and 0.2, respectively, in order to have
ARL0 ≈ 200. Based on Equation (3), the variance-covariancematrix of the Poisson regression
parameters is obtained as:

�0 =
(

σ 2
β̂1

ρσ
β̂1

σ
β̂2

ρσ
β̂1

σ
β̂2

σ 2
β̂2

)
=
(

0.0141 −0.0196
−0.0196 0.0314

)
Table 1 presents the ARL0 and SDRL0 values of the Hotelling’s T 2 and MEWMA charts

for the estimated parameters case under different values ofm. Note that the value ofm = ∞
given in the last column of Table 1 implies that the control charts are constructed using the
known regression parameters. Table 1 shows that using the estimated regression parameters
to calculate the charts statistics when the control limits are set based on the known parameters
can strongly affect the in-control performance of both theHotelling’sT 2 andMEWMAcharts.

Table . ARL0 and SDRL0 values for different values ofm.

m

Chart criterion          ∞
ARL . . . . . . . . . .

Hotelling’s T 2 SDRL . . . . . . . . . .

MEWMA θ = 0.05 ARL . . . . . . . . . .
SDRL . . . . . . . . . .

MEWMA θ = 0.1 ARL . . . . . . . . . .
SDRL . . . . . . . . . .

MEWMA θ = 0.2 ARL . . . . . . . . . .
SDRL . . . . . . . . . .
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The results in Table 1 indicate that the effect of the estimated parameters on the MEWMA
chart is stronger than on the Hotelling’s T 2 chart, in terms of the ARL0 metric. For example,
whenm = 15, we have ARL0 = 164.994 for the Hotelling’s T 2 chart, while for the MEWMA
chart we have ARL0 = 70.942, 75.100 and 91.547 when θ = 0.05, 0.1 and 0.2, respectively.
However, in the case of estimated parameters, the SDRL0 values of the MEWMA chart are
smaller than the one of the Hotelling’s T 2 chart. In addition, it can be seen that for all values
of parameterm, theMEWMAchart for θ = 0.2 is the least affected one compared to the other
values of parameter θ . In general, we can conclude that as the value of the smoothing constant
θ increases, the effect of the parameters estimation on the performance of theMEWMA chart
decreases in terms of the ARL0 metric. For the MEWMA chart this trend is reversed when
the SDRL0 metric is taken into consideration. In the other words, as the value of parameter θ

increases, the dispersion of the run length values will also increase. The trend in the results
of Table 1 is similar to that reported in Mahmoud (2012) which was carried out on linear
profiles. In other words, similar to linear profiles, for Poisson regression profiles, the ARL0
and SDRL0 form < ∞ are increasingwhenm increases but they are always smaller thanARL0
and SDRL0 form = ∞. It is worth mentioning here that, whenm is small, the accuracy of the
estimated parameters is low. This makes the chart statistic falling outside the upper control
limit more quicker. Hence, the in-control run length values would be smaller than in the case
of known parameters. Consequently, selecting small values ofm for estimating the regression
parameters leads to obtaining smaller ARL0 and SDRL0 values.

5. Remedial measures

As seen in Section 4, constructing both Hotelling’s T 2 and MEWMA statistics based on esti-
mated parameters adversely affects the in-control performances of these charts. To overcome
thementioned issue, two procedures are presented in the following subsections to compensate
for the effect of estimated regression parameters on Phase II monitoring of Poisson regression
profiles.

Table . Values of (m,ARL0) for different value of�.

�

Chart % % % %

Hotelling’s T 2 (,.) (,.) (,.) (,.)

MEWMA θ = 0.05 (,.) (,.) (,.) (,.)
θ = 0.1 (,.) (,.) (,.) (,.)
θ = 0.2 (,.) (,.) (,.) (,.)

Table . Values ofUCL to achieve ARL0 ≈ 200.

m

Chart             ∞

T 2 . . . . . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . . . . . .
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Table . ARL1 values for different shifts from β1 to β1 + δ1σβ̂1
.

δ1

m Chart . . .  . . . 

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

∞ T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

5.1. Increasing the size of the reference sample

As seen in Table 1, increasing the number m of reference data in Phase I analysis reduces
the effect of estimated regression parameters on the ARL0 performance of both control
charts. Hence, increasing the number of reference data in Phase I analysis is recommended
in the literature to compensate for the effect of estimated parameters on the performance of
different control charts. However, in some cases, due to economical or other restrictions, it
is not possible to collect a large sample data set for estimating the process parameters. As
a consequence, it is important to determine the minimum number m of reference data in
Phase I to ensure a desired value of ARL0.

Here, through simulation studies, the minimum number m of reference data in Phase
I in order to have an ARL0 value of at least � = 100 × (1 − ARL∞−ARLm

ARL∞ ) percent for � ∈
{80%, 85%, 90%, 95%} are computed and listed in Table 2. As seen in Table 2, for each value
of �, the Hotelling’s T 2 chart needs a smaller number of Phase I sample data compared to
the MEWMA chart. For example, for the Hotelling’s T 2 chart, using m = 26 reference data

M. R. MALEKI ET AL.1970



Table . SDRL1 values for different shifts from β1 to β1 + δ1σβ̂1
.

δ1

m Chart . . .  . . . 

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

∞ T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

to estimate the regression parameters can result in 90% of the desired ARL0 value. This per-
centage can only be achieved for MEWMA chart by using m = 300, 220 and 200 samples
when θ = 0.05, θ = 0.1 and θ = 0.2, respectively. In addition, for the MEWMA chart, as θ

increases, the number of Phase I reference data that is needed to ensure a predetermined value
of ARL0 decreases.

5.2. Modifying the control limits

As seen in Tables 1 and 2, the ARL0 performances of the Hotelling’s T 2 and the MEWMA
charts for estimated parameters improve as the number m of Phase I sample data increases.
However, in some practical applications, it is not possible to wait too long for collecting a
sufficiently large data set to achieve a desired ARL0 value. Hence, in such situations, it is
important to reduce the rate of false alarms without collecting a large Phase I sample data
set. Here, through simulation experiments, the modified control limits of both charts are
computed to have a predeterminedARL0 value. The modified control limits of the Hotelling’s
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Table . ARL1 values for different shifts from β2 to β2 + δ2σβ̂2
.

δ2

m Chart . . .  . . . 

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

∞ T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

T 2 and MEWMA charts to achieve ARL0 ≈ 200 are summarized in 3. Table 3 shows that
for both charts, decreasing the number of Phase I samples leads to wider control limits. For
instance, for the Hotelling’s T 2 chart, in order to achieve ARL0 ≈ 200 for m = 5, we need to
widen the control limit by about 10% while, for m = 70 the control limit only needs to be
widened by about 0.5%.

6. Detecting out-of-control shifts in the case of parameter estimation

In this section, using the same data set as in Sections 4 and 5, the effect of parameters esti-
mation on the performance of the Hotelling’s T 2 and MEWMA charts to detect different step
changes in the regression parameters is investigated. Simulation experiments are carried out
to compare the performances of these methods, in terms of the out-of-control ARL (ARL1)
and out-of-control SDRL (SDRL1) criteria. To have a fair comparison for each value of param-
eterm, the ARL0 value of the competing charts must be the same. Hence, to obtain the values
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Table . SDRL1 values for different shifts from β2 to β2 + δ2σβ̂2
.

δ2

m Chart . . .  . . . 

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

 T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

∞ T 2 . . . . . . . .
MEWMA θ = 0.05 . . . . . . . .
MEWMA θ = 0.1 . . . . . . . .
MEWMA θ = 0.2 . . . . . . . .

of ARL1 and SDRL1 for each value ofm, theUCL values summarized in Table 3 are used and
substituted in Step 1 of the method presented in Section 3. The out-of-control performances
of the Hotelling’s T 2 andMEWMA charts under different step changes, in terms of ARL1 and
SDRL1 are compared in Tables 4–9 for m ∈ {10, 30, 50, 70, 90, 140, 165, ∞}. Recall that the
last four rows in Tables 4-7 imply that the ARL1 and SDRL1 values are obtained based on
known parameters.

Table 4 contains theARL1 values under different shift magnitudes for the intercept param-
eter in units of σ

β̂1
. As seen in Table 4, the estimated parameters to calculate the chart statis-

tics adversely affect the detecting performance of both charts in terms of ARL1. As expected,
the results of the four last columns given in Table 4 show that in the case of known regres-
sion parameters, the MEWMA chart outperforms the Hotelling’s T 2 chart for small shifts
δ1 ∈ {0.25, 0.5, 0.75, 1}, while for large shifts δ1 ∈ {1.25, 1.5, 1.75, 2}, the performance of the
Hotelling’sT 2 chart is better than that of theMEWMAchart. It can be seen that, similar results
are obtained when the chart statistics are calculated using estimated regression parameters for
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each value of m ∈ {10, 30, 50, 70, 90, 140, 165}. Moreover in most out-of-control scenarios,
the results confirm that for the MEWMA chart, selecting θ = 0.2 leads to the best perfor-
mance of this chart to detect different shifts for different values of the parameter m. From
Table 4 we can conclude that by increasing the number m of Phase I reference data, smaller
ARL1 values are obtained. For example, for the Hotelling’s T 2 chart for δ1 = 0.5, increasing
the value ofm from 10 to 70, decreases the ARL1 from 38.555 to 26.609. Taking into account
the SDRL1 metric, we can conclude from the results of Table 5 that for both control charts,
increasing the number m of Phase I reference data, m, decreases the dispersion of the run
length values.

The ARL1 and SDRL1 values of the Hotelling’s T 2 and MEWMA charts to detect different
shifts in the slope parameter in units of σ

β̂2
are summarized in Tables 6 and 7, respectively. The

simulated results imply that designing the chart statistics based on the estimated regression
parameters reduces the capability of both control charts to detect sustained shifts in the slope
parameter, in terms of both ARL1 and SDRL1 metrics. However, increasing the number of
Phase I reference data improves the detection performance of both control charts, in terms of

Table . ARL1 values for joint shifts from (β1, β2) to (β1 + δ1σβ̂1
, β2 + δ2σβ̂2

).

(δ1, δ2)

m Chart (.,.) (.,.) (.,) (.,.) (.,.) (.,) (,.) (,.) (,)

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

∞ T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .
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Table . SDRL1 values for joint shifts from (β1, β2) to (β1 + δ1σβ̂1
, β2 + δ2σβ̂2

).

(δ1, δ2)

m Chart (.,.) (.,.) (.,) (.,.) (.,.) (.,) (,.) (,.) (,)

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

 T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

∞ T 2 . . . . . . . . .
MEWMA θ = 0.05 . . . . . . . . .
MEWMA θ = 0.1 . . . . . . . . .
MEWMA θ = 0.2 . . . . . . . . .

bothARL1 and SDRL1 metrics. Table 6 shows that for each value ofm, the performance of the
MEWMA chart to detect small shifts, δ2 ∈ {0.25, 0.5, 0.75, 1} is better than the Hotelling’s T 2

chart. However, for large shifts, δ1 ∈ {1.25, 1.5, 1.75, 2} the Hotelling’s T 2 chart outperforms
the MEWMA chart.

Here the detecting performances of the Hotelling’s T 2 and MEWMA charts, for dif-
ferent joint changes in the regression model parameters are compared in Tables 8 and 9.
Similar to the previous results, the results of Tables 8 and 9 indicates that the capability of
both methods in detecting joint shifts are adversely affected when the regression param-
eters are estimated. In the case of both known and estimated parameters, it is concluded
from Table 8 that the MEWMA chart outperforms the Hotelling’s T 2 chart for small shifts
(δ1, δ2) ∈ {(0.25, 0.25), (0.25, 0.5), (0.5, 0.25), (0.5, 0.5)}while, for other ones (large shifts)
the performance of the Hotelling’s T 2 chart is better than for the MEWMA chart. In addition
the performance of the MEWMA chart under θ = 0.2 is better than the other scenarios
for the smoothing parameter. As expected, under all joint shifts, as the number m of Phase
I reference data increases, the value of ARL1 will decrease. It can be concluded from Table 9
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that for both control charts increasing the number m of Phase I reference data, uniformly
decreases the SDRL1 values.

7. Conclusions and future research

In this paper, the effect of using estimated regression parameters to design the chart statistics
for monitoring Poisson regression profiles has been evaluated. First of all, the effect of esti-
mated regression parameters on the ARL0 and SDRL0 performances of the Hotelling’s T 2 and
MEWMA charts was assessed. The results showed that the in-control performance of both
control charts are adversely affected when the chart statistics are designed based on the esti-
mated regression parameters. At the second stage, the minimum number of Phase I reference
samples to fulfill a predeterminedARL0 value has been obtained for both control charts. Then,
at the third stage,modifiedUCL values for bothmethodswere computed to haveARL0 ≈ 200.
These modifiedUCL values were used at the fourth stage of our work to evaluate the effect of
estimated regression parameters on the out-of-control performance of the Hotelling’s T 2 and
MEWMA charts. Two metrics, namely ARL1 and SDRL1, were used to compare the detection
performance of these methods. The results of the fourth stage of our study revealed that the
out-of-control performances of both charts are seriously affected when the regression param-
eters are estimated. Monitoring autocorrelated Poisson regression profiles when the parame-
ters are estimated based on Phase I sample data is recommended in a future work. In addition,
taking into account the effect of parameter estimation to monitor logistic regression profiles
can be considered as another study in the future.
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