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ABSTRACT
The objective of this paper is to study the Phase I monitoring and
change point estimation of autocorrelated Poisson profiles where the
response values within each profile are autocorrelated. Two charts, the
SLRT and the Hotelling’s T 2, are proposed along with an algorithm for
parameter estimation. The detecting power of the proposed charts is
compared using simulations in terms of the signal probability criterion.
The performance of the SLRT method in estimating the change point
in the regression parameters is also evaluated. Moreover, a real data
example is presented to illustrate the application of the methods.

1. Introduction

In some practical systems, the quality of a process is well characterized by a functional rela-
tionship between a response variable and one or several explanatory variables. Analyzing the
stability of this relationship over time through statistical techniques is referred to as “pro-
file monitoring”. For detailed information about profile monitoring approaches in Phases I
and II refer to review papers by Woodall et al. (2004) and Woodall (2007) and the book
by Noorossana, Saghaei, and Amiri (2011). In most researches in the literature of profile
monitoring, the response values within each profile are assumed to be independent from
each other. However, in many practical situations, the independency assumption of response
values within each profile is violated. In recent years, taking into account the autocorre-
lation structure in profile monitoring approaches is discussed by Noorossana, Amiri, and
Soleimani (2008), Jensen, Birch, and Woodall (2008), Soleimani, Noorossana, and Amiri
(2009), Amiri, Jensen, and Kazemzadeh (2010), Noorossana, Saghaei, and Dorri (2010),
Abdel-Salam, Birch, and Jensen (2013), Keramatpour et al. (2013), Narvand, Soleimani, and
Raissi (2013), Soleimani, Noorossana, and Niaki (2013b), Soleimani, Narvand, and Raissi
(2013a), Keramatpour, Niaki, and Amiri (2014), Soleimani and Hadizadeh (2014), Soleimani
and Noorossana (2014), Zhang et al. (2014), and Khedmati and Niaki (2016).

In all of the above-mentioned papers, the response variable is assumed to follow a nor-
mal distribution. However, in practice, it is likely to face with conditions where the response
values belong to a discrete distribution such as binary, binomial, Poisson, etc. To the best
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of our knowledge, only few methods have been proposed to investigate autocorrelated pro-
files with discrete response variables. Koosha and Amiri (2013) explored the effect of within-
profile autocorrelation on Phase I monitoring of logistic regression profiles. They used two
approaches, namely the modification of the upper control limit and the generalized linear
mixed model (GLMM), to account for the within-profile autocorrelation. Maleki, Amiri, and
Taheriyoun (2017) proposed a state space model for Phase II monitoring of autocorrelated
binary profiles when the successive response values within each profile are autocorrelated.
The method they suggested is not only able to detect changes in the autocorrelated logis-
tic regression parameters but, also in the autocorrelation coefficient. Then, Maleki, Amiri,
and Taheriyoun (2017b) proposed twomaximum likelihood estimators to identify the change
point under step changes and linear trends in Phase II monitoring of binary regression pro-
files in the presence of within-profile autocorrelation. They evaluated the performance of the
proposed estimators in terms of the accuracy and the precision criteria through simulation
studies. They also presented a numerical example to illustrate the application of their pro-
posed estimators under both step change and linear trend.

Although analyzing autocorrelated profiles under binary response values has been receiv-
ing little attention,monitoring autocorrelated profiles with other kind of discrete distributions
has clearly been neglected in the literature. In many practical profile monitoring applications,
as a response variable, it is common to deal with count data in the case of within-profile auto-
correlation. As one of the most important count data-type distribution in profile monitoring
applications, the quality practitioners would face with Poisson response variables where the
observations within each profile are autocorrelated. To illustrate the motivation of our work,
as an environmental application, consider the number of agglomerates which are ejected from
a volcano in successive days. In this example, the count of agglomerates (the response vari-
able) is a function of the agglomerates diameters (the explanatory variable). Clearly, the count
of agglomerates in a given day will affect the future ones. Hence, due to the autocorrelation
structure between the response values, an autocorrelated Poisson regression model should be
used to express the relationship between the response and the explanatory variable. As another
example, consider the count of stolen goods in successive months of a given city which is con-
sidered as the response variable. Here, the explanatory variable would be the count of theft in
the adjacent city. In this example, the count of theft for each month not only is affected by the
value of explanatory variable, but also by the count of theft during the preceding months.

As far as we know, analyzing such profiles with Poisson response variables are restricted to
Amiri, Koosha, and Azhdari (2011) and Amiri, Koosha, Azhdari, andWang (2015) where the
response values are assumed to be independent.Hence, due to the potential application of pro-
filemonitoring with autocorrelated count data in real manufacturing and non-manufacturing
situations as well as to fill the mentioned research gap, the Phase I monitoring as well as the
change point estimation of autocorrelated Poisson regression profiles are both investigated
in this paper. In the proposed model, the process parameters are linked linearly to their
past values as well as to the observed values of the response variable via an INGARCH(1,1)
model. This paper is organized as follows. The proposed regression model to account for the
within-profile autocorrelation along with the parameter estimation method are discussed in
Section 2. The proposed control charts to monitor the autocorrelated Poisson profile as well
as to identify the time of the step change in the vector of model parameters are introduced
in Section 3. Then, in Section 4, the performance of the proposed control charts, namely, the
SLRT and the Hotelling’s T 2 charts, to detect different out-of-control scenarios, is evaluated
and compared in terms of the out-of-control signal probability criterion. In Section 5, the
performance of the SLRT chart, a change point-based method, to estimate the time of the
step change in the vector of regression model coefficients is assessed in terms of accuracy
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and precision as well as the empirical distribution of the estimated change point parameter.
In Section 6, a real data example is presented to illustrate the implementation of the pro-
posed framework. Finally, concluding remarks along with some recommendations for future
researches are given in Section 7.

2. The autocorrelated Poisson regression profile and the parameter estimation
approach

First, in this section, the Poisson regression model considering the within-profile autocorre-
lation is discussed. Then, the particle swarm optimization (PSO) algorithm used in this paper
to estimate the regression parameters will be described.

2.1. The proposed autocorrelated Poissonmodel

Recently, modeling time series of count data has received a growing attention by researchers
and it has been applied in several fields. The wide application of integer-valued time series are
highlighted by the quality practitioners. The integer-valued generalized autoregressive con-
ditional heteroscedastic (INGARCH (p, q)) model is a popular tool to model autocorrelation
structure of count data (Zhu 2012). This model, proposed by Ferland, Latour, and Oraichi
(2006), is an integer-valued analogue of a GARCH(p, q) process. The INGARCHmodel can
be used to model processes where the value of the response variable in a given treatment not
only depends on the preceding response values but also on the value of the explanatory vari-
able in the current treatment. For the explicit expression of themodel, in this section, the auto-
correlated Poisson regressionmodel using the INGARCH(1,1) structure is introduced. Let yi, j
be the response value at ith; i = 1, . . . , n experimental setting of profile j; j = 1, . . . ,m. We
assume that the observations {y1, j, . . . , yn, j} within each profile j are autocorrelated and fol-
low an INGARCH(1,1) model where the intensity parameter for observation i and profile
j is equal to λi, j(θ). In this case, λi, j(θ) is expressed in terms of the vector θ = (d, a, b, β)ᵀ,
λi−1, j (the Poisson parameter corresponding to the previous observation), yi−1, j (the response
value corresponding to the previous observation) as well as the vector of explanatory variables
xi = (xi,1, xi,2, . . . , xi,p)ᵀ for observation i. Then, the Poisson parameter for observation i and
profile j is given as

λi, j(θ) = d + aλi−1, j(θ) + byi−1, j + xᵀi β (1)

where d, a, b > 0 are three parameters to be fixed, β = (β1, β2, . . . , βp)
ᵀ is the vector of coef-

ficients associated with the explanatory variables and λ0, j and y0, j are two initial values which
have to be fixed. We can rewrite (1) as

λi, j = d(1 + a + · · · + ai−1) + aiλ0, j

+ b(ai−1y0, j + ai−2y1, j + · · · + ayi−2, j + yi−1, j) (2)
+ (ai−1x1 + · · · + axi−1 + xi)ᵀβ

For profile j = 1, . . . ,m, the joint probability function of the observations {y0, j,
y1, j, . . . , yn, j} is equal to

f (y0, j, y1, j, . . . , yn, j) = f (yn, j|yn−1, j, . . . , y0, j)
× f (yn−1, j|yn−2, j, . . . , y0, j) (3)
× · · · × f (y1, j|y0, j) × f (y0, j)
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Using the Markov property, one can rewrite (3) as follows:

f (y0, j, y1, j, . . . , yn, j) = f (yn, j|yn−1, j) × f (yn−1, j|yn−2, j)

× · · · × f (y2, j|y1, j) × f (y1, j|y0, j) × f (y0, j) (4)

Then, for profile j = 1, . . . ,m, the likelihood function of vector θ given the initial value
of y0, j and based on observations y1, j, . . . , yn, j is equal to

Lj (θ) =
(

n∏
i=1

Li, j(θ)

)
f (y0, j)

=
(

n∏
i=1

e−λi, j (θ)(λi, j (θ))yi, j

yi, j!

)(
e−λ0, jλ0, j

y0, j!

)
(5)

where Li, j(θ) = f (yi, j|yi−1, j) for i = 1, . . . , n and j = 1, . . . ,m. Taking the logarithm of
Lj(θ), leads to ln Lj(θ) = ∑n

i=1 ln Li, j(θ) + ln f (y0, j). Since the last term of ln Lj(θ) does not
depend on parameter θ, we can rewrite it as:

ln Lj (θ) =
n∑

i=1

(
yi, j ln(λi, j(θ)) − λi, j (θ)

)+C (6)

whereC is a constant that does not depend on vector θ. Under some mild restrictions on the
parameter space, one may assume that ln Lj(θ) is a differentiable function, thus ∂ ln L j (θ)

∂θ
= 0.

Now assume that there exists a sub-space at the parameter space such that ln Lj(θ) is twice
differntiable. Then, use of the Taylor expansion allows to obtain:

1
n

n∑
i=1

∂ ln Li, j(θ)

∂θ

∣∣∣∣
θ=θ0

+ (̂θ − θ0)
ᵀ
[
1
n

n∑
i=1

∂2 ln Li, j(θ)

(∂θ) (∂θ)
ᵀ

∣∣∣∣
θ=θ0

]
= 0 (7)

where θ0 is the vector of the model parameters when the process is in-control. Therefore:

√
n(̂θ − θ0)

ᵀ =
[
−1
n

n∑
i=1

∂2 ln Li, j(θ)

(∂θ) (∂θ)
ᵀ

∣∣∣∣
θ=θ0

]−1
1√
n

n∑
i=1

∂ ln Li, j(θ)

∂θ

∣∣∣∣
θ=θ0

(8)

Using the law of large numbers and continuous mapping theorem, we have:[
1
n

n∑
i=1

∂2 ln Li, j(θ)

(∂θ) (∂θ)
ᵀ

∣∣∣∣
θ=θ0

]−1

→ E

[
− ∂2 ln Lj(θ)

(∂θ) (∂θ)
ᵀ

∣∣∣∣
θ=θ0

]−1

(9)

where the right hand is the information matrix. The normality of MLE estimators is related
to the use of a central limit theorem for the convergence at 1√

n

∑n
i=1

∂ ln Li, j (θ)

∂θ
|θ=θ0 , where the

rate of convergance is at leastO(
√
n). As an example, for a sample size of n = 100, the normal

approximation of θ̂, computes P(̂θ ∈ A) for any Borel set A with an error of less than 0.1.
Here we define the ML equation system of ln Lj(θ) as

g(θ) = ∂ ln Lj(θ)

∂θ
=

n∑
i=1

(
yi, j

λi, j(θ)
− 1

)
∂λi, j(θ)

∂θ
(10)

The maximum point of ln Lj(θ), called as θ̂, can be achieved by solving g(θ) = 0. How to
estimate the vector of regression parameters is discussed in Sub section 2.2.
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2.2. Parameter estimation by PSO algorithm

As noted in the previous subsection, θ̂ is obtained by solving g(θ) = 0. However, there is no
way to find a closed-form solution for θ̂. In addition, the parameter estimation methods pro-
posed in the literature of profile monitoring to estimate the regression parameters are based
on the independency assumption of the response values within each profile which is violated
in many practical applications. As an example, by assuming the case of independent response
values, Amiri, Koosha, Azhdari, and Wang (2015) used an iterative reweighted least-square
(IRLS) method to estimate the regression parameters for Poisson regression profiles. On the
other hand, the run time by using exact algorithms to maximize the logarithm of the like-
lihood function significantly depends on the Hessian matrix of ln Lj(θ). As the determinant
value of theHessianmatrix increases, the run time of the algorithmwill increase considerably.
Hence, it is important here to use an algorithm to obtain θ̂ for which the run time is as short
as possible. This issue is more crucial in processes where the rate of production per time unit
is high. To deal with the mentioned issue and to take into account the within-profile autocor-
relation structure, in this paper we develop a PSO type algorithm to obtain θ̂ that maximizes
the logarithm of the likelihood function.

The PSO metaheuristic algorithm which has been extended by Eberhart and Kennedy
(1995) is a global search algorithm based on the swarm behavior of particles. A point in the
problem space is referred as a particle which is considered as a candidate solution in the opti-
mization problem. In an iterative procedure, this computational algorithm moves toward an
optimum solution by improving a candidate solutionwith regard to a givenmeasure of quality.
In PSO algorithm, the collective behavior of a population not only depends on the individual
behavior of each particle, but it also depends on the interaction between them. As a conse-
quence, there is a complex nonlinear relationship between the individual and the collective
behaviors in this algorithm. Each particle is initialized with a random position (solution) and
it seeks the optimal solution such that it can keep track of its position, velocity (change pattern
of solution) and fitness. The position and the velocity of each particle is adjusted by consid-
ering its own experience and social cooperation by its fitness to the environment. As a result,
three factors including (1) the current position of the particle, (2) the best position of the par-
ticle among its previous positions (personal best), and (3) the best position among all particles
in the population (global best) can affect the behavior of a given particle. In other words, each
particle improves its position based on the current velocity as well as the personal best and
the global best. Therefore, the velocity and position of particle k = 1, . . . ,K, during iteration
(u + 1) can be expressed by (11) and (12), defined as:

v(u+1)
k = w(u+1)v(u)

k + c1r1
(
p(u)

k − x(u)

k

)+ c2r2
(
p(u)
g − x(u)

k

)
(11)

x(u+1)
k = x(u)

k + v(u+1)
k (12)

where c1 and c2 are the so-called cognitive learning rate and social learning rate, respectively,
while r1 and r2 are random vectors with a uniform distribution within the range [0, 1]. In
(11), p(u)

k and p(u)
g represent the personal best of particle k and the global best at iteration u,

respectively. Note that, w at iteration (u + 1) is defined as the inertia weight which can be
obtained as

w(u+1) = wdamp × w(u) (13)

where parameter wdamp is selected within the range [0, 1] which implies that the effect of
inertia in consecutive iterations decreases in comparison with p(u)

k and p(u)
g .
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3. Proposed control charts

In this section, the proposed control charts for Phase I monitoring of Poisson regression pro-
files under within-profile autocorrelation are expressed. Note that the proposed SLRT chart
not only detects different changes, but it also has capability to identify the change point in the
vector of model parameters.

3.1. SLRTmethod

Suppose that a step change in vector θ occurs for profile τ ∈ {1, 2, . . . ,m − 1}. Then, Lall(θ) (
the likelihood function concerning the complete data), Lbef (θ) (the likelihood function con-
cerning the first τ profiles), and Laft(θ) (the likelihood function concerning the remaining
m − τ profiles) are calculated according to (14), (15) and (16), respectively,

Lall(θ) =
m∏
j=1

f (y0, j)
n∏

i=1

e−λi, j (θ)(λi, j(θ))yi, j

yi, j!
(14)

Lbef (θ) =
τ∏
j=1

f (y0, j)
n∏

i=1

e−λi, j (θ)(λi, j(θ))yi, j

yi, j!
(15)

Laft(θ) =
m∏

j=τ+1

f (y0, j)
n∏

i=1

e−λi, j (θ)(λi, j(θ))yi, j

yi, j!
(16)

Obviously the values of the log-likelihood ln(Lall(θ)), ln(Lbef (θ)), and ln(Laft(θ)) are cal-
culated as follows:

ln (Lall(θ)) =
m∑
j=1

n∑
i=1

yi, j ln(λi, j(θ)) − λi, j(θ) − ln(yi, j!)

+
m∑
j=1

y0, j ln(λ0, j) − λ0, j − ln(yi, j!) (17)

ln (Lbef (θ)) =
τ∑
j=1

n∑
i=1

yi, j ln(λi, j(θ)) − λi, j(θ) − ln(yi, j!)

+
τ∑
j=1

y0, j ln(λ0, j) − λ0, j − ln(yi, j!) (18)

ln (Laft(θ)) =
m∑

j=τ+1

n∑
i=1

yi, j ln(λi, j(θ)) − λi, j(θ) − ln(yi, j!)

+
m∑

j=τ+1

y0, j ln(λ0, j) − λ0, j − ln(yi, j!) (19)

Here, through the extended PSO algorithm, the estimated parameter vectors θ̂all, θ̂bef , and
θ̂aft are obtained by maximizing (17), (18), and (19), respectively. Let �all, �bef , and �aft be the
values of Lall(θ), Lbef (θ), and Laft(θ) obtained by replacing vector θ by θ̂all, θ̂bef , and θ̂aft in (14),
(15) and (16), respectively. The LRT statistic for Phase I monitoring of autocorrelated Poisson
regression profiles considering the within-profile structure expressed in (1) is

LRTτ = −2 (ln �all − (ln �bef + ln �aft)) (20)
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Finally, the likelihood ratio statistic is standardized as follows:

SLRTτ = LRTτ − E(LRTτ )

σ (LRTτ )
(21)

where E(LRTτ ) and σ (LRTτ ) are the expected value and standard deviation of LRTτ , respec-
tively, which are computed by Monte Carlo simulation in practice. The control chart triggers
an out-of-control signal when SLRTτ > UCL where the upper control limitUCL is obtained
by simulation in order to satisfy a fixed probability of Type-I errorα. The guideline for design-
ing and implementing the proposed SLRT chart is depicted in Figure 1.

Figure . The flowchart of the proposed SLRT chart.



5892 M. R. MALEKI ET AL.

3.2. Hotelling’s T 2 control chart

As the first study in the profile monitoring area concerning discrete distributions for the
response variable, Yeh, Huwang, and LI (2009) proposed five Hotelling’s T 2 based charts for
Phase I monitoring of binary regression profiles under assumption of independence of the
observations. This chart has been extended byMaleki, Amiri, andTaheriyoun (2017) tomoni-
tor binary regression profiles under within-profile autocorrelation structure in Phase II. Here,
we develop this approach to a Phase I monitoring of Poisson regression profiles where the
response values within each profile are autocorrelated based on the INGARCH(1,1) model.
The chart statistic for profile j ∈ {1, . . . ,m} is expressed as

T 2
j = (̂θ j − θ̂)ᵀS−1

θ̂
(̂θ j − θ̂) (22)

where θ̂ j is the estimated vector of model parameters which is obtained by maximizing Lj(θ)

using the PSO algorithm, ¯̂
θ = 1

m

∑m
j=1 θ̂ j and Ŝθ is the sample variance-covariance matrix of

the estimated model parameters corresponding to profiles j = 1, . . . ,mwhich is defined as

Ŝθ = 1
2 (m − 1)

m−1∑
j=1

(̂θ j+1 − θ̂ j)(̂θ j+1 − θ̂ j)
ᵀ (23)

The chart triggers an out-of-control signal when the extended Hotelling’s T 2 statistic
exceeds an upper control limitUCL obtained by simulation in order to satisfy a fixed proba-
bility of Type-I error α.

4. Performance evaluation of the proposedmethod to detect shifts in model
parameters

In this section, the performance of the proposed monitoring schemes to detect different
shifts in the vector of model parameters is evaluated in terms of the signal probability cri-
terion. Without loss of generality, we assume that m = 30, n = 20, p = 1, and λ0 = 1. The
vector of explanatory variable, which is fixed from profile to profile is considered equal to
x = (0, 01, 0, 02, . . . , 0.20)ᵀ and when the process is in-control, the vector θ is equal to
(d, a, b, β)ᵀ = (1, 0.2, 0.2, 0.25)ᵀ. The UCL values for the proposed SLRT and Hotelling’s
T 2 charts are set equal to 6.7238 and 22.3083, respectively, in order to have α = 0.05.

The out-of-control signal probabilities under different step shifts in the model parameters
for different values of parameter τ , namely, τ ∈ {5, 10, 15} are given in Tables 1–4. The step
changes in the model parameters are denoted by q + δqσq, with q ∈ {d, a, b, β}, where δq and
σq are the magnitude of shift for parameter q and the standard deviation of this parameter,
respectively. Recall that τ is the time where the process changes to an out-of-control state. It is

Table . Signal probability values under shift from d to d + δdσd .

τ δd . .  .  .

 T 2 . . . . . .
SLRT . . . . . .

 T 2 . . . . . .
SLRT . . . . . .

 T 2 . . . . . .
SLRT . . . . . .
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Table . Signal probability values under shift from a to a + δaσa.

τ δa . .  .  .

 T 2 . . . . . .
SLRT . . . .  

 T 2 . . . . . .
SLRT . . . .  

 T 2 . . . . . .
SLRT . . . . . 

also worth to mention that the signal probability criterion is defined as the number of out-of-
control signals divided by the total number of simulation replicates. The performance of the
proposed control charts to detect different shifts in parameter d in units of σd is summarized
in Table 1. As we can see, for both methods, as δd increases, the out-of-control signal prob-
ability increases. Table 1 shows that for all values of parameter τ , the proposed SLRT chart
outperforms the Hotelling’s T 2 chart under all shifts induced in parameter d. The results of
Table 1 also reveal that for a small shift δd = 0.5, the proposed SLRTmethod has its best per-
formance when τ is equal to 15. However, as the magnitude of the shift increases to 0.75 and
1, the best performance of this method is obtained when τ = 10. Finally, for larger shifts of
δd ∈ {1.5, 2, 2.5}, the proposed SLRT control chart for τ = 5 outperforms the other two ones.
It can be generally concluded that, decreasing the value of parameter τ in the SLRT method
leads to improving the capability of this method to detect large shifts in parameter d.

Table 2 shows the obtained out-of-control signal probabilities for different values of τ under
shifts in parameter a in units of σa. As expected, it is observed from Table 2 that, as the mag-
nitude of the shift in the parameter a increases, the performance of both proposed methods
improves. However, for all out-of-control scenarios, the performance of the proposed SLRT
chart to detect changes in the parameter a is better than the Hotelling’s T 2 chart. As we can
see, in all out-of-control shifts in parameter a, the performance of the SLRT method in the
cases of τ = 5 and τ = 10 is better than τ = 15.

Table . Signal probability values under shift from b to b+ δbσb.

τ δb . .  .  .

 T 2 . . . . . .
SLRT . . . . . 

 T 2 . . . . . .
SLRT . . . . . 

 T 2 . . . . . .
SLRT . . . . . .

Table . Signal probability values under shift from β to β + δβσβ .

τ δ
β

. .  .  .

 T 2 . . . . . .
SLRT . . . . . .

 T 2 . . . . . .
SLRT . . . . . .

 T 2 . . . . . .
SLRT . . . . . .



5894 M. R. MALEKI ET AL.

The performance of the proposed control charts to detect different shifts in the parameter
b in units of σb is compared in Table 3. As expected similar to the results of Tables 1 and 2,
the power of the proposed SLRT and Hotelling’s T 2 control charts improves as the magnitude
of shift in the parameter b increases. It is seen that for all values of parameter τ and under
various values of δb, the proposed SLRT chart considerably outperforms the Hotelling’s T 2

chart. Similar to Table 2, in the cases of τ = 5 and τ = 10, the out-of-control signal proba-
bility values obtained from the proposed SLRT control chart are larger than the case when
τ = 15.

The signal probability values for both proposed charts under different shift magnitudes in
parameter β in units of σβ are given in Table 4. The results show that similar to the previous
Tables, the performance of both methods improves as the magnitude of the shift increases.
Table 4 represents that under all out-of-control scenarios, the SLRT chart outperforms the
Hotelling’s T 2 chart. However, the signal probability values of both methods to detect shifts
in parameter β are almost close to each other. It can also be concluded that the SLRT chart
under τ = 10 has the best detecting performance when the magnitude of the shift is equal
to δβ ∈ {0.5, 0.75, 1, 1.5}while, in the case of δβ ∈ {2, 2.5}, for τ = 5, this chart outperforms
the corresponding results for τ = 10 and τ = 15. Generally, we can conclude that it is better
to select τ = 5 and τ = 10 for detecting large and small shifts in parameter β , respectively.
Table 4 also shows that the sensitivity of both SLRT andHotelling’s T 2 control charts to detect
out-of-control situations in parameter β is smaller than those to detect shifts in the other
parameters.

5. Performance evaluation of the proposedmethod to estimate change point
in model parameters

In this section, the performance of the proposed SLRT method, a change point based control
chart, to estimate the time of change in the vector of the model parameters is investigated
using the same process data of Section 4. For this aim, three criteria namely the accuracy,
precision and empirical distribution of estimated change point parameter are used for each
regression coefficient and obtained by simulation experiments. The values of accuracy acc(τ̂ )

and precision prec(τ̂ ) for τ ∈ {5, 10, 15} are reported in Figures 2–9. Note that these two
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Figure . The values of acc(τ̂ ) under shifts in the parameter d.
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Figure . The values of prec(τ̂ ) under shifts in the parameter d.
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Figure . The values of acc(τ̂ ) under shifts in the parameter a.
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Figure . The values of prec(τ̂ ) under shifts in the parameter a.
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Figure . The values of acc(τ̂ ) under shifts in the parameter b.
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Figure . The values of prec(τ̂ ) under shifts in the parameter b.
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Figure . The values of acc(τ̂ ) under shifts in the parameter β .
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Figure . The values of prec(τ̂ ) under shifts in the parameter β .

criteria are defined as

acc(τ̂ ) = Ê(|τ̂ − τ |) =
N∑

v=1

|τ̂v − τ |
N

prec(τ̂ ) = σ̂ (|τ̂ − τ |) =
√√√√ N∑

v=1

(|τ̂v − τ | − Ê(|τ̂ − τ |))2
N − 1

respectively, where τ̂v is the estimated change point at vth replicate, τ is the actual change
point andN is the total number of replicates. The cumulative distribution function of |τ̂ − τ |,
denoted by p(|τ̂ − τ | ≤ u), is given in Tables 5–8, for u = 0, 1, . . . , 5. The performance of the

Table . Empirical distribution of |τ̂ − τ | under shifts in d.
τ δd . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δd . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δd . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .
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Table . Empirical distribution of |τ̂ − τ | under shifts in a.
τ δa . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δa . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δa . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

proposed SLRT estimator to identify the time of change in parameter d in terms of accuracy
and precision criteria is illustrated in Figures 2 and 3 while the probability values are summa-
rized in Table 5. Figure 2 shows that for the E(|τ̂ − τ |) criterion and under shift magnitudes
of δd ∈ {0.5, 0.75, 1}, the SLRTmethod considering τ = 10 outperforms the other scenarios,
i.e., τ = 5 and τ = 15. However, the performance of the proposed estimator in terms of the

Table . Empirical distribution of |τ̂ − τ | under shifts in b.
τ δb . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δb . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δb . .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .
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Table . Empirical distribution of |τ̂ − τ | under shifts in β .

τ δ
β

. .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δ
β

. .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

τ δ
β

. .  .  .

 p(|τ̂ − τ | ≤ 0) . . . . . .
p(|τ̂ − τ | ≤ 1) . . . . . .
p(|τ̂ − τ | ≤ 2) . . . . . .
p(|τ̂ − τ | ≤ 3) . . . . . .
p(|τ̂ − τ | ≤ 4) . . . . . .
p(|τ̂ − τ | ≤ 5) . . . . . .

acc(τ̂ ) criterion for τ = 5 is better than the other scenarios for parameter τ when the magni-
tude of the shift in parameter d is considered equal to 1.5, 2 and 2.5. In general, for large shifts
in parameter d, the performance of SLRT estimator for identifying the change point in param-
eter d under τ = 5 is better than the other scenarios for parameter τ . However, under small
shifts in this parameter, the SLRT method has its best performance to estimate the change
point in parameter d when the shift is occurred at τ = 10. Figure 3 shows that the dispersion
of τ̂ in the case of τ = 10 is smaller than other ones when δd ∈ {1, 1.5, 2, 2.5}. Clearly from
Table 5, we can notice that for all values of parameter τ , as the magnitude of the step shift in
the parameter d increases, the percentage of exact estimation increases. The probability values
summarized in Table 5 shows that in general, the performance of SLRT method for τ = 10 is
better than the performance of this method under the other scenarios for parameter τ .

Figure 4 shows that under moderate (δa ∈ {1, 1.5}) and large shifts (δa ∈ {2, 2.5}) in
parameter a, the proposed estimator considering τ = 5 performs better than the other sce-
narios of parameter τ in terms of the acc(τ̂ ) criterion. From Figure 5, we can conclude that
the SLRT method for τ = 5 performs with more accuracy than the other cases of param-
eter τ when δa is considered equal to 2 and 2.5. However for shifts δa ∈ {0.75, 1, 1.5}, the
best performance of this method in terms of the prec(τ̂ ) criterion is obtained when the
change is induced at profile τ = 10. The probability values reported in Table 6 indicates that
the performance of the proposed method to identify the change point in the parameter a is
satisfactory.

As seen in Figure 6, the best performance of the SLRT method in terms of accuracy crite-
rion for shift magnitudes δb ∈ {1, 1.5, 2, 2.5} is obtained when τ = 5. Figure 7 shows that
under small shifts (δb ∈ {0.5, 0.75}), moderate shifts (δb ∈ {1, 1.5}) and large shifts (δb ∈
{2, 2.5}), the SLRTmethod has its best performance when τ = 15, τ = 10 and τ = 5, respec-
tively. As expected, Table 7 reveals that as the magnitude of the shift in parameter b increases,
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the obtained probability values will also increase. Table 7 also shows that the obtained results
in terms of the probability values under first scenario (τ = 5) outperforms the others.

The expected value and the standard deviation for the difference of actual and estimated
change point parameter are depicted in Figures 8 and 9, respectively. From these figures it can
be concluded that the performance of the proposed estimator in terms of both accuracy and
precision criteria is deteriorated as the value of parameter τ decreases. The obtained proba-
bility values given in Table 8 shows that the capability of the SLRTmethod to identify the time
of change in the parameter β is not as satisfactory as those when the shift is induced in the
other model parameters.

6. Real data example

In this section, the performance of the proposed framework is illustrated by a real data exam-
ple concerning the number of thefts in two cities in Australia, namely Albury and Armidale
Dumaresq. In this data set (considered as a Phase I analysis and available in data.gov.au), the
monthly number of receiving or handing stolen goods are gathered during period 1995 to
2015. Hence, we havem = 21 profiles (each year is considered as a profile) such that each one
contains n = 12 observations. The number of thefts in Albury and Armidale Dumaresq are
considered as the response and explanatory variable, respectively. Here, due to the three fol-
lowing reasons, we fit an autocorrelated Poisson regression profile using an INGARCH(1,1)
model given in Equation (1) to the data set:

1. The data set (the number of thefts in Albury) only contains positive integers which can
be modeled using a Poisson distribution.

2. Based on experts feedback, the number of thefts for a given month is clearly affected
by those of the preceding months (the data are autocorrelated).

3. Since Albury and Armidale Dumaresq are nearby, they have lots of similarities such
as the same national cultures, etc. Hence, the number of thefts in Albury in a given
month can be affected by those in Armidale Dumaresq.

In addition, themean value of the studentized residuals of this nonlinearmodel (Figure 10)
shows that the values of these residuals are not considerably large. This may confirm the accu-
racy of this model for the data.

It is also important to note that two kinds of causes, local and global ones, impact the
count of crimes in these cities. Studying the counts of thefts in two different cities with dif-
ferent locations but the same calendar (having the same holidays, national days, etc.) and
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Figure . T 2 statistic values for data example.

national cultures helps us to monitor the global causes by considering the variation of the
counts in other cities. It is worth mentioning that the global causes can be produced by many
unknown and unmeasurable reasons such, for instance, the date of hot seasons, the rate of
tourism in some days, the date of holidays and the governmental rules where all of them are
almost the same in two seasons but it is not possible to quantify the effect of these sources.
Therefore, we add the term xᵀi β, the number of crimes in Armidale Dumaresq, to consider
the total effect of these sources by considering the variation of the number of crimes in the
city. First of all, from the data set, we obtain θ̂ = (1.0772, 0.4323, 0.3046, 0.2975)ᵀ using the
PSO algorithm.Here, any changes in the vector ofmodel parameters in Equation (1) indicates
an out-of-control signal. After obtaining θ̂, using simulations, we have generated 10000 repli-
cates of m = 21 profiles with n = 12 experimental settings in order to obtain the values of
UCL for both the proposed SLRT andHotelling’s T 2 charts such that the probability of Type-I
error, α = 0.05. Afterwards, these control charts are applied on the real data and the profiles
whose corresponding statistics exceeds UCL are eliminated. In this case, the value of vector
θ̂ is recomputed based on the remaining profiles and then the UCL values of the proposed
control charts are updated. This procedure is repeated until no more out-of-control signal
occurs in the proposed control charts. The maximum value of SLRTτ ; τ ∈ {1, 2, . . . , 20} for
this data set is obtained equal to 0.3710 while theUCL = 5.3772. The values of Hotelling’s T 2

statistic for the data example is depicted in Figure 11. As seen, for the Hotelling’s T 2 chart, the
value of all T 2 statistics are smaller than theUCL = 13.7042. Since for both proposed control
charts, the data set are in-control, the estimated parameters in Phase I analysis can be applied
to monitor the upcoming profiles in Phase II.

7. Conclusion remarks and recommendations for future studies

In this paper, we studied the Phase I monitoring of autocorrelated Poisson regression pro-
files considering an INGARCH(1,1) model under within-profile autocorrelation. Two con-
trol charts, namely the SLRT and the Hotelling’s T 2 charts, were proposed to detect different
step shifts in the vector of model parameters. We investigated and compared the efficiency
of the proposed charts in terms of the out-of-control signal probability criterion. Moreover,
we investigated the capability of the proposed SLRT chart in estimating the time of change
in the vector of regression model parameters. Based on the obtained results, we found that
the detecting capability of the proposed SLRT chart is superior than the one of the Hotelling’s
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T 2 chart. The results also indicated that the performance of the SLRT method to identify the
change point in the vector of model parameters is satisfactory, except for parameter β . Finally,
we illustrated the application of the proposed methods in a Phase I analysis of autocorrelated
Poisson regression profile by a real case study. The future study would be directed to consid-
ering between-profile autocorrelation for monitoring Poisson regression profiles. Besides, the
effect of parameter estimation on the performance of control charts for monitoring autocor-
related Poisson regression profiles is also recommended as a future research.
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