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In this paper, we propose a new methodology based on the combination of cumulative sum procedure and generalized
likelihood ratio statistic for joint monitoring of the process location and dispersion. Then, we explore the effect of
measurement errors on detecting ability of the proposed control chart when (i) the variance of measurement error is
constant (ii) the variance of measurement error increases linearly as the level of the process mean increases. We also utilize
multiple measurements on each sample point in order to decrease the adverse effects of measurement errors on the
performance of the proposed control charts. Two numerical examples based on simulation studies are given to evaluate
the ability of the proposed methods in terms of average run length, median run length, standard deviation of run length,
and the first and third quantile points of the run length distribution (Q1 and Q3). Finally, a real life example is given to
illustrate the application of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

T
he cumulative sum (CUSUM) control chart directly incorporates the information of both the current and preceding sample
values by plotting the cumulative sum of the deviations of the sample values from a given target value (Montgomery1). Hence,
CUSUM control charts are more sensitive to detect small and moderate shifts in the process location and dispersion in

comparison with Shewhart – type control charts. Since the first CUSUM monitoring scheme was introduced by Page,2 many
researchers have proposed different modifications on CUSUM procedure to monitor the process location and dispersion in different
statistical monitoring applications. In the rest of this section, we mention the recent CUSUM-based control charts which are proposed
for monitoring the process location and dispersion:

Knoth3 provided a methodology for computing the average run length (ARL) values for CUSUM schemes based on the sample
variance S2. Jiao and Helo4 proposed an algorithm to an optimal design of a CUSUM control chart to detect mean shifts. Their
proposed algorithm optimizes the sample size, sampling interval, control limit, and the reference parameter of the CUSUM control
chart through minimizing the overall mean value of a Taguchi loss function over the probability distribution of the random process
mean shift. Castagliola and Maravelakis5 proposed a CUSUM control chart to monitor process dispersion with estimated process
variance. They compared the performance of their proposed methodology with the same control chart in which the process
parameters are assumed to be known. Shu et al.6 developed an algorithm based on piecewise collocation method to compute the
run-length distributions of CUSUM scale control charts. They proved that the proposed method provide more accurate approximation
for the run-length distribution rather than the conventional Gauss-type quadrature-based method applied to the CUSUM location
control charts. Huang et al.7 introduced an algorithm based on the piecewise collocation method for computing the run-length
distribution of CUSUM control chart in environments with skewed quality characteristics such as gamma distribution. Abujiya
et al.8 proposed a monitoring schemed based on the combination of Shewhart and CUSUM range R statistics to improve the
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performance of control chart to detect out-of-control situations in the process dispersion. Abujiya et al.9 provided CUSUM
control charts for monitoring the process dispersion with normal data based on the well-structured sampling techniques
including extreme ranked set sampling, extreme double ranked set sampling and double extreme ranked set sampling. Su
et al.10 proposed a CUSUM control chart in which the probability density function of the in-control process distribution is
not required to be known. They used kernel density estimation methods to estimate the density of an in-control process
distribution.

The control charts for monitoring the process mean and the process variability have been usually developed separately in the
literature. In practice, the control charts for monitoring both process mean and variability should be implemented together because
the assignable causes can affect both of them. In recent years, quality practitioners have concentrated on joint monitoring of process
mean and dispersion. In the following paragraph, we only focus on the recent researches provided for joint monitoring of the process
location and dispersion under different processes:

Wu11 proposed a real-time model based on the wavelet transform and probabilistic neural networks for the joint recognition of
both mean and variance patterns. Chowdhury et al.12 proposed a distribution-free Shewhart-type control chart based on the Cucconi
statistic control chart. They also introduced a diagnostic procedure to determine the type of process shifts when the chart triggers an
out-of-control signal. Prajapati and Singh13 designed a modified joint X and R control chart based on the sum of chi-squares theory for
simultaneous monitoring purpose. Maleki and Amiri14 introduced a novel neural network-based model for simultaneous monitoring
of the mean vector and covariance matrix under mixed multivariate-attribute quality characteristics. For detailed information, refer to
review paper provided by McCracken and Chakraborti15.

In most real production systems, the measuring instruments have some inherent sources of inaccuracy. As a result, the observed
value of the quality characteristic under investigation does not equal to the accurate value. The difference between the observed
value of the quality characteristic under investigation and the real one which is due to the measuring instruments or operators is
called as ‘measurement errors’. The measurement errors can seriously affect the ability of control charts in detecting various out-
of-control conditions. The effect of measurement errors on different control charts are well documented in the literature. Here, we
only concentrate on the most recent researches in this area.

Moameni et al.16 investigated the effect of measurement errors on the effectiveness of the fuzzy control chart in detecting
out-of-control situations using a linear covariate model. Abbasi17 provided a comparison study among the performance of
three control charts to monitor the process mean including Shewhart, CUSUM, and exponentially weighted moving average
(EWMA) charts using the two component measurement error (TCME) model. Saghaei et al.18 derived the cost function of an
EWMA control chart considering the measurement errors and taking multiple measurements where the Taguchi loss functions
is used to compute the imposed cost due to the poor quality products. They presented a numerical example and computed
the ARL values using a Markov chain method. They also obtained the optimal values of the chart parameters using a genetic
algorithm. Noorossana and Zerehsaz19 explored the effect of the classical additive measurement errors model on the most
commonly used control charts for monitoring simple linear profiles in Phase II. Abbasi20 studied the effect of the TCME on
the EWMA control chart. They also provided a cost function analysis to determine the optimal number of multiple
measurements and the sample size to reduce the effect of TCME. Khati Dizabadi et al.21 investigated the effect of
measurement errors with linearly increasing-type variance on the performance of maximum exponentially weighted moving
average and mean-squared deviation control chart to detect out-of-control scenarios. The effect of contaminated data due
to the gauge measurement errors on the performance of ELR control chart under ranked set sampling procedure is explored
by Ghashghaei et al.22.

In this paper, we propose a new methodology based on the CUSUM procedure and generalized likelihood ratio (GLR) for the joint
monitoring of the process location and dispersion. Then, we study the effect of measurement errors in two scenarios: (i) constant
variance, (ii) linearly increasing-type variance. We also utilize multiple measurements at each sample point as a remedial approach
to decrease the adverse effect of measurement errors on the ability of the proposed control chart. The rest of the paper is organized
as follows: Cumulative sum control chart for monitoring the process mean and the process variability are presented in Sections 2.1
and 2.2, respectively. In Section 2.3, the proposed method for the joint monitoring of the process mean and variability is presented.
Effect of measurement errors for both constant variance and linearly increasing variance are explained in Sections 3.1 and 3.2,
respectively. In order to decrease the measurement errors effect, taking several measurements on each sample point is suggested in
Section 4. In Section 5, the performance of the proposed method is evaluated using two numerical examples based on simulation
studies. In Section 6, a real life example is given to illustrate the application of the proposed method. Finally, some concluding remarks
and suggestions for future research are provided in Section 7.

2. Cumulative sum control chart

2.1. Cumulative sum control chart for monitoring process mean

Let Xt be the tth observation of the quality characteristic of interest. When the process is in-control, Xt is normally distributed with
mean μ0 and variance σ20 . For tth; t=1 , 2 , . . . sample, the control chart statistics to detect increasing and decreasing mean shifts
are obtained according to Eqs (1) and (2), respectively:
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Aþ
t ¼ max 0; Xt � μ0 þ Kð Þ þ Aþt�1

� �
; (1)

A�
t ¼ max 0; μ0 � Kð Þ � Xt þ A�t�1

� �
; (2)

where Aþt ¼ A�t ¼ 0 and K is called as the reference value of the control chart. Note that, the reference value usually is selected equal
to |μ1�μ0|/2, where μ1 is the out-of-control value of the process mean that we aim to detect quickly. For tth; t=1 , 2 , . . . sample, the
CUSUM statistic to detect both increasing and decreasing mean shifts is given as follows:

At ¼ max Aþ
t ;A

�
t

� �
(3)

The chart triggers an out-of-control signal when At>H1, where H1 is determined such that the in-control average run length (ARL0)
value of the control chart is equal to a pre-specified constant.

2.2. Cumulative sum control chart for monitoring process dispersion

For tth; t=1 , 2 , . . . sample, the chart statistic to detect increasing variance shifts is calculated as follows:

Bþt ¼ max 0; Bþt�1 þ X2
t � λþ

� �� �
(4)

where Bþ0 ¼ 0 and λ+ is the reference value according to the following formula:

λþ ¼ σ2þ� ln σ2þ
� �

σ2þ � 1
> 0 (5)

Similarly, the chart statistic to detect decreasing variance shifts corresponding to tth sample can also be calculated as follows:

B�t ¼ max 0; B�t�1 þ λ� � X2
t

� �� �
(6)

where B�0 ¼ 0 and λ� is the reference value which can be determined as follows:

λ� ¼ σ2�� ln σ2�
� �

σ2� � 1
> 0 (7)

For tth sample, the statistic of the CUSUM chart to detect both increasing and decreasing variance shifts can be calculated as
follows:

Bt ¼ max Bþt ; B
�
t

� �
(8)

The chart triggers an out-of-control signal when Bt>H2 where H2 is determined such that the value of ARL0 is equal to some pre-
specified constant.

2.3. Proposed method for joint monitoring the process mean and variability

Joint monitoring of the process mean and variability is equivalent to considering the following hypothesis:

H0 : μ ¼ μ0 and σ2 ¼ σ20
H1 : μ≠μ0 or σ2≠σ20

(
(9)

In order to decide between H0 and H1, the GLR statistic corresponding to tth sample (denoted by LRt) can be utilized as follows:

LRt ¼ X
2
t þ S2t � ln S2t

� �
; (10)

where Xt ¼ ∑
n

j¼1
Xtj=n and S2t ¼ ∑

n

j¼1
xtj � X
� �

t
=n are the sample mean and the sample variance of tth sample. To increase the

sensitivity of the control chart in detecting small and moderate shifts, we incorporate the CUSUM procedure in constructing the
LRt statistic. Hence, the monitoring statistic concerning the joint monitoring of the process location and dispersion will be

CLRt ¼ A2t þ Bt � ln Btð Þ (11)

The proposed joint monitoring scheme triggers an out-of-control signal when CLRt>H, where the value of H is determined such
that the ARL0 value is equal to some pre-determined constant.
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3. Effect of measurement errors

In this section, the effect of measurement errors on the ability of the proposed control chart for joint monitoring of the process
location and dispersion is described.

3.1. Effect of measurement errors in the case of constant variance

In order to incorporate the measurement errors into the proposed control chart, we assume the following covariate model:

Yt ¼ aþ bXt þ εt; (12)

where Yt (linearly related to Xt) is the observed value of tth observation. Here, εt is the random error variable independent of Xt and is
normally distributed with mean zero and constant variance of σ2ε . In addition a and b are defined as the intercept and slope constants,
respectively. As the result Y follows normal distribution as follows:

Y e N aþ bμX ; b
2σ2X þ σ2ε

� �
(13)

For tth observation, the extended chart statistic to detect increasing and decreasing mean shifts in the presence of measurement
errors with the constant variance are computed as follows:

Aþ
t
0 ¼ max 0; Yt � μ0 þ Kð Þ þ Aþt�1

0� �
(14)

A�
t
0 ¼ max 0; μ0 � Kð Þ � Yt þ A�t�1

0� �
(15)

whereAþt
0 ¼ A�t

0 ¼ 0. Then the CUSUM statistic for detecting mean shifts in the presence of error term with a constant variance will be

At
0 ¼ max Aþt

0; A�t
0� �

(16)

For tth sample, the extended statistic to detect increasing and decreasing variance shifts in the case of constant variance is
obtained based on Eqs (17) and (18), respectively:

Bþt
0 ¼ max 0; Bþt�1 þ Y2

t � λþ
� �� �

(17)

B�t
0 ¼ max 0; B�t�1 þ λ� � Y2

t

� �� �
(18)

where Bþ0
0 ¼ B�0

0 ¼ 0. Note that λ+ and λ� are calculated using Eqs (5) and (7), respectively. Finally the extended CUSUM statistic to
monitor both location and dispersion parameters under measurement errors with constant variance can be calculated as follows:

Bt
0 ¼ max Bþt

0; B�t
0� �

(19)

After constructing the CUSUM statistics for monitoring process location and dispersion, the extended statistic for joint monitoring
purpose in the presence of measurement errors is defined as follows:

CLRt
0 ¼ A

0 2
t þ Bt

0 � ln Bt
0

� �
(20)

The proposed control chart triggers an out-of-control signal when CLRt
0
>H

0
, where H

0
is determined based on simulation

experiments to have ARL0 equal to a pre-specified constant.

3.2. Effect of measurement errors in the case of linearly increasing variance

In some production systems, the assumption of constant variance for measurement errors is violated, and the variance of error term
increases linearly as the level of the process mean increases. To model such situations, we consider the covariate model similar to
Section 3.1 according to Eq. (12). All assumptions are considered similar to previous subsection except the one that variance of εt
is proportional to μX and is equal to C+DμX where C and D are two constant values. Hence, Z is a normally distributed quality
characteristic with the following parameters:

Z e N aþ bμX ; b
2σ2X þ C þ DμX

� �
(21)

For tth sample, Eqs (1) and (2) are written as follows:
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Aþt
00 ¼ max 0; Zt � μ0 þ Kð Þ þ Aþt�1

0 0� �
(22)

A�t
00 ¼ max 0; μ0 � Kð Þ � Zt þ A�t�1

0 0� �
(23)

where Aþ
t
0 0 ¼ A�t

0 0 ¼ 0. Then, Eq. (3) for joint monitoring process location in the presence of measurement errors with linearly
increasing variance is rewritten as follows:

At
0 0 ¼ max Aþ

t
0 0;A�t

00� �
(24)

For tth sample, Eqs (4) and (6) in the case of linearly increasing variance for error term are rewritten as follows:

Bþt
00 ¼ max 0; Bþt�1

0 0 þ Z2
t � λþ

� �� �
; (25)

B�t
00 ¼ max 0; B�t�1

0 0 þ λ� � Z2
t

� �� �
; (26)

where Bþ0
0 0 ¼ B�0

0 0 ¼ 0. Similarly, λ+ and λ� are calculated using Eqs (5) and (7), respectively. Finally we have

Bt
0 0 ¼ max Bþt

0 0; B�t
0 0� �

(27)

The proposed CUSUM statistic for joint monitoring of process location and dispersion in the presence of measurement error with
linearly increasing variance is

CLRt
0 0 ¼ A

0 0 2
t þ Bt

0 0 � ln Bt
0 0

� �
(28)

The proposed control chart triggers an out-of-control signal when CLRt
0 0
>H

0 0
, where H

0 0
is determined based on simulation

experiments to have ARL0 equal to a pre-specified number.

4. Multiple measurements

4.1. Multiple measurements under constant error variance

In this subsection, we incorporate multiple measurements approach into the proposed control chart when the constant variance is
considered. Taking k measurements on each sample point, the covariate model can be rewritten according to Eq. (29):

Ytj ¼ aþ bXt þ εtj: (29)

For tth sample, Yt ¼ 1
k ∑

k

j¼1
Ytj where Yt e N aþ bμX ; b

2σ2X þ
σ2ε
k

� 	
. In order to derive the monitoring statistic while multiple

measurements approach is utilized, we substitute Yt instead of Yt in all equations of Section 3.1. For t=1 , 2 , . . ., we denote the control
statistic by MCLRt

0
which can be determined as follows:

MCLRt
0 ¼ MA

0 2
t þMBt

0 � ln MBt
0

� �
(30)

Note that MAt
0
and MBt

0
are obtained with replacing Yt by Yt in Eqs (14)–(19). The proposed control chart triggers an out-of-control

signal when MCLRt
0
>MH

0
where MH

0
is set such that ARL0 be a pre-specified number.

4.2. Multiple measurements under constant error variance

Utilizing multiple measurements on each sample point in the case of linearly increasing variance for error term is discussed in this
subsection. The covariate model in this case when k units are measured on each sample point is similar to Section 4.1. Similarly,

for t= 1 , 2 , . . . sample point, we have Zt ¼ 1
k ∑

k

j¼1
Ztj where Zt e N aþ bμX ; b

2σ2X þ
CþDμX

k

� 	
. When multiple measurements are

applied, the chart statistic for joint monitoring of the process location and dispersion in the presence of measurement error with
linearly increasing variance can be written as follows:

MCLRt
0 0 ¼ MA

0 0 2
t þMBt

0 0 � ln MBt
0 0

� �
(31)

In Eq. (31), MAt
0 0
and MBt

0 0
are obtained with replacing Zt by Zt in Eqs (22)–(27). The proposed control chart triggers an out-of-control

signal when MCLRt
0 0
>MH

0 0
, where MH″ is set such that the value of ARL0 be a pre-specified number.
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5. Performance evaluation

In this section, two numerical examples based on simulation studies are given in order to explore the ability of the proposed control
charts in terms of some run length (RL)-based criteria namely ARL, median run length (MRL), standard deviation of run length (SDRL)
and the first and third quantile points of the run length distribution (Q1 and Q3). In numerical example 1, firstly the ability of proposed
CUSUM-based chart for joint monitoring purpose is investigated and compared with generalized likelihood ration statistic (denoted
by LR). Then, the effect of measurement errors with constant variance on detecting ability of the proposed control chart is explored.
After that, the results of utilizing multiple measurements in the case of measurement error with constant variance are studied. In
numerical example 2, we consider linearly increasing variance for the error term and investigate the effect of measurement errors
on the proposed control chart. Then, we explore multiple measurements to improve the detecting ability of control chart. Note that,
in all simulation experiments, we set the upper control limit (UCL) of the proposed control charts to have ARL0 = 200. Then, we
evaluate the ability of proposed CUSUM-based charts to detect mean shifts, variance shifts and the joint shifts in the both under
constant and linearly increasing variance for measurement error. It is notable that the proposed monitoring schemes can be used
when individual observations are used for joint monitoring the process location and dispersion. Hence, the sample size of n= 1 is used
in all simulation experiments. Note that, we use MATLAB computer packaged in our simulation experiments.

5.1. Example 1

Assume that the interested quality characteristic follows the standardized normal distribution (X~N(0, 1)) and the error term which is
independent form X is a normally distributed variable with mean zero and constant variance of σ2ε . Also assume that the covariate
model parameters are a=0 and b= 1. Table I contains the results of the proposed CLR control chart (which is obtained by
incorporating the CUSUM procedure into GLR statistic) against the GLR to detect various out-of-control scenarios in terms of ARL,
SDRL, MRL, and Q1 and Q3based on 20,000 simulation experiments. Table I shows that the proposed CLR method outperforms GLR
statistic to detect most step shifts in terms of all RL-based criteria considered.

In Table II, the RL features of the proposed control chart under covariate model under different values of σ2ε are evaluated. It is clear
that in each shift type considered including mean shifts, variance sifts, and joint shifts, the detecting ability of the control chart
decrease as the variance of measurement error increases. As the result, we can conclude that the measurement error with constant
variance can adversely affect the detecting ability of the proposed CLR control chart.

In Table III, the RL features of the proposed chart are assessed when multiple measurements approach is utilized by considering
the constant value for the measurement error variance. It is seen that, as the number of measurements for each sample point
increases, all the RL-based criteria tend to decrease. Consequently, the multiple measurements error can cover the effect of
measurement errors with constant variance. Although, increasing the number of measurements on each sample point leads to
improvement in statistical features of the CLR control chart; however, the cost of sampling will increase. As the result, there is a
trade-off between statistical and economical objectives which can be decided by the process practitioners. Figure 1 graphically
illustrates the effect of measurement errors with constant variance and utilizing multiple measurements on each unit. We also provide
a comparison study on the effect of parameter k on the detecting ability of control chart in terms of SSE (Sum of Squares due to Error)
in Table IV. It is seen that as the value of k increases, the value of SSE decreases exponentially.

Figure 1. Comparison study under constant variance of error term. ARL, verage run length [Colour figure can be viewed at wileyonlinelibrary.com]

Table IV. The values of SSE under constant variance of error term

k = 1 k = 3 k = 5

SSE 6981.652 237.415 76.07567
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5.2. Example 2

Here, we assume that when the process is in-control, X~N(0.5, 1). The error term which is independent form X is a normally
distributed variable with mean zero and variance C+DμX . Note that, similar to Section 5.1, the covariate model parameters are
a=0 and b= 1.

First the effect of parameter D is evaluated, and the results based on 20,000 simulation experiments are summarized in Table V. It is
observed that as parameter D increase, the ability of control chart in detecting all out-of-control scenarios decreases. It is worth
mentioning here that in comparison with error term with constant variance, the adverse effect of measurement error with linearly
increasing variance on CLR control chart is more significant.

In Table VI, we give the results of sensitivity analysis on parameter C under different out-of-control step shifts in the case of linearly
increasing variance. The results represent that in each step shift considered, increasing the parameter C leads to larger RL-based
quantities.

Table VII displays the RL-based quantities when the multiple measurements approach is utilized when linearly increasing variance
is considered for the measurement error. We see that the multiple measurements on each unit reduce the adverse effect of error with
linearly increasing variance. It is also concluded that increasing the number of measurements on each sample point improves the
detecting ability of the proposed control chart. See also Figure 2 in order to have an illustrative view on the effect of parameter k
on the proposed control chart. A comparison study is also provided in Table VIII for investigating the effect of parameter k on the
detecting ability of control chart in terms of SSE.

6. Case study

In this section, the application of our proposed monitoring scheme is illustrated by a real data set from a long-standing research
project in the ambulatory monitoring system (Hawkins and Maboudou-Tchao23). In this work, subjects were equipped with

Table VI. Characteristics of the CLR chart under linearly increasing variance error for different values of C and D = 1

C (μ1,σ1) (0.5,1) (1,1) (1.5,1) (2,1) (0.5,1. 5) (0.5,2) (0.5,2.5) (1,1.5)

1 ARL 200.2115 69.3081 26.5693 15.7745 99.3765 54.3510 33.9643 49.9606
SDRL 113.7497 48.2776 16.7086 8.2819 55.2427 31.2795 19.7070 32.9482
MRL 234 65 25 15 111 57 34 47
Q1 148 33 16 11 64 32 20 25
Q3 280 103 36 20 140 77 48 73

2 ARL 199.5296 86.7449 34.5239 20.6214 122.5092 76.7545 50.4553 66.8594
SDRL 101.9144 56.2815 21.0897 10.7315 63.3957 40.5700 27.6435 42.1671
MRL 231 84 32 20 138 82 52 64
Q1 163 45 21 14 90 51 31 36
Q3 270 127 46 27 168 107 71 97

3 ARL 199.8333 96.9663 41.2656 24.4241 137.7040 92.3817 64.4592 78.7037
SDRL 96.3625 61.0931 24.9494 12.7243 68.1991 47.5505 33.6528 48.4180
MRL 229 93 39 24 155 100 67 76
Q1 168 52 26 17 103 62 41 43
Q3 266 141 55 31 187 128 89 114

C (μ1,σ1) (1,2) (1,2.5) (1.5,1.5) (1.5,2) (1.5,2.5) (2,1.5) (2,2) (2,2.5)
1 ARL 35.7627 26.5316 24.2483 21.6206 18.5763 15.2029 14.4341 13.3508

SDRL 22.7213 16.1586 15.4662 13.7210 11.6278 8.3873 8.3397 7.9879
MRL 34 25 22 20 17 14 13 12
Q1 19 15 14 12 10 10 9 8
Q3 51 37 33 29 25 20 19 18

2 ARL 50.7350 38.4575 32.3361 29.1576 25.9315 19.7014 19.0119 17.8844
SDRL 30.7790 22.8801 19.9900 18.1333 15.7642 10.6682 10.8201 10.3071
MRL 49 37 30 27 24 19 18 16
Q1 28 22 19 17 15 13 12 11
Q3 73 54 43 39 35 25 25 23

3 ARL 61.9383 48.6568 38.2373 35.5598 31.7120 23.8068 22.9364 21.8265
SDRL 36.9074 27.8224 23.7631 21.7618 19.1500 12.7148 12.6725 12.3921
MRL 60 47 35 33 29 23 21 20
Q1 35 29 23 21 19 16 15 14
Q3 88 68 51 48 43 31 30 29
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Table VII. Characteristics of the CLR chart under linearly increasing variance error for different values of k when C = 1, D = 1

k (μ1,σ1) (0.5,1) (1,1) (1.5,1) (2,1) (0.5,1. 5) (0.5,2) (0.5,2.5) (1,1.5)

2 ARL 199.7268 53.3400 18.9617 11.1384 63.0666 30.8609 18.6448 33.3830
SDRL 132.8063 40.4146 12.0612 5.7360 40.0541 19.5766 11.7275 23.5231
MRL 224 48 18 11 67 31 18 31
Q1 86 22 11 8 33 16 10 15
Q3 295 80 26 14 92 45 26 49

3 ARL 199.2087 43.5470 15.3292 9.1119 46.5605 21.6801 13.1713 25.8253
SDRL 154.7678 34.5982 9.9700 4.6348 32.1689 14.6307 8.6521 18.8107
MRL 206 38 14 9 47 21 12 23
Q1 27 16 9 6 20 11 7 11
Q3 304 65 21 12 69 31 19 38

5 ARL 200.5342 34.2102 12.2015 7.2638 32.0810 14.8202 9.0351 19.0220
SDRL 197.5562 28.9336 8.0673 3.6670 23.9455 10.5123 6.2648 14.4074
MRL 165 29 11 7 30 13 8 16
Q1 13 11 7 5 12 7 4 8
Q3 308 50 17 9 48 21 13 28

k (μ1,σ1) (1,2) (1,2.5) (1.5,1.5) (1.5,2) (1.5,2.5) (2,1.5) (2,2) (2,2.5)
2 ARL 22.4562 15.7926 16.7905 14.3188 11.8763 10.6985 9.9033 8.9737

SDRL 14.9331 10.1294 10.9926 9.4770 7.7455 6.0231 6.0332 5.5261
MRL 21 15 15 13 11 10 9 8
Q1 11 8 9 8 6 7 6 5
Q3 32 22 23 20 16 14 13 12

3 ARL 16.7313 11.6078 13.6016 11.1739 9.1209 8.5858 8.0062 7.0986
SDRL 11.5164 7.6430 9,0290 7.5512 6.1025 4.9514 5.0193 4.5594
MRL 15 10 12 10 8 8 7 6
Q1 8 6 7 6 5 5 5 4
Q3 24 16 18 15 12 11 11 9

5 ARL 11.9037 8.2156 10.4926 8.5239 6.7969 6.8483 6.1648 5.4845
SDRL 8.4641 5.7176 7.2418 5.9195 4.6316 4.0182 3.9499 3.6370
MRL 11 7 9 7 6 6 5 5
Q1 5 4 5 4 3 4 3 3
Q3 17 11 14 12 9 9 8 7

Figure 2. Comparison study under linearly increasing variance of error term [Colour figure can be viewed at wileyonlinelibrary.com]

Table VIII. The values of SSE under linearly increasing variance of error term

k = 2 k = 3 k = 5

SSE 4222.518 1568.039 308.650
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instruments to measure and record physiological variables. The wearer’s blood pressure and heart rate were measured and recorded
every 15 min for 6 years. The values of variable of interest namely mean diastolic blood pressure (DBP) are summarized in Table IX. To
explore the effect of measurement error on the rate of false alarm, using error-free data, the UCL is set such that ARL0 = 200 and the
parameters of Eq. ((12)) are assumed to be as a= 0 , b=1 , εt~N(0, 1) ; t=1 , . . . , 24. The CLR(without error) and CLR

0
(with error)

statistics corresponding to all 24 observations are plotted in Figure 3. Figure 3 shows that all 24 samples are in-control when there
is no measurement error whereas in the presence of measurement error, the control chart triggers a false alarm in ninth sample taken.

7. Conclusion

In this paper, a new approach based on CUSUM procedure and generalized likelihood ratio statistic for joint monitoring of the process
mean and variance was presented in which simulation was employed for computing some RL-based criteria. For all methods, the UCL
value was set such that we have a same in-control ARL value in order to achieve a fair comparison. The results indicated the
satisfactory ability of the proposed control chart in detecting all step shifts rather than GLR statistic. Then, the effect of measurement
errors in two cases of error variance including constant and linearly increasing variance on the ability of the proposed CUSUM-based
chart was studied. The results showed the adverse effects of measurement errors especially when the variance of error term was
considered as linearly increasing-type. Furthermore, in order to decrease the effects of gauge measurement errors, taking several
measurements on each sample point was suggested as an effective remedial approach. The obtained results supported the claim that
as the number of measurement on each sample point increases, the ARLs, SDRLs, MRLs, and the values of Q1 and Q3 decreases in the
both cases of constant and linearly increasing variance for error term. Finally, the applicability of the proposed approach was
illustrated by a real data example. As a direction for the future researches, the proposed method can be extended for a process with
multivariate quality characteristics in which the process mean vector and variance–covariance matrix should be monitored jointly.
Furthermore, it could be interesting to monitor mean and variance of a process with profile quality characteristics in the presence
of measurement errors.

Table IX. The values of mean diastolic blood pressure

Sample number DBP Sample number DBP

1 78.357 13 75.246
2 79.283 14 78.153
3 80.756 15 76.428
4 81.412 16 75.742
5 81.294 17 75.994
6 79.634 18 73.581
7 81.060 19 73.946
8 77.676 20 79.588
9 78.729 21 77.350
10 78.731 22 75.729
11 78.267 23 77.828
12 76.632 24 76.389

DBP, diastolic blood pressure.

Figure 3. The effect of measurement error on the rate of false alarm. UCL, upper control limit [Colour figure can be viewed at wileyonlinelibrary.com]
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