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1. Introduction

Statistical process monitoring (SPM) helps the quality managers
and practitioners to improve the quality of the products by reduc-
ing the process variability. The control chart introduced by She-
whart in 1924 is viewed as the most important tools of SPM
which is usually used for monitoring the process mean or variabil-
ity. One of the main purposes of the control charts is to distinguish
between assignable and common causes of variation. The process
that works only in the presence of common causes of variability
is said to be statistically in-control. When a given sample falls out-
side the control limits, the control chart triggers an out-of-control
signal. If the issued signal from control chart is not a false alarm,
corrective action(s) should be implemented to eliminate the
assignable cause(s) and, consequently, return the process to the
in-control state.

In real statistical process monitoring applications, two sources
of variation including variations due to the manufacturing process
and the variations due to the measurement instruments can cause
imprecise measurements. Most of research works in statistical pro-
cess monitoring assumes that the measurements are accurate.
However, an exact measurement is a rare phenomenon in any
manufacturing and service environment where human involve-
ment is necessary. As a consequence, the existence of errors due
to either the measurement instruments and/or operators is inevita-
ble. In other words, a difference between the real quantities and
the measured ones will always exist even with highly sophisticated
advancedmeasuring instruments. For instance, in a production line
filling bottles, it is impossible to obtain the exact volume of the liq-
uid inside the bottles; in a mass-spectrometry analysis in analyti-
cal laboratories, measurement errors usually occur in the
generation and measurement of peak area; in medical applications,
the measurements of blood pressure by an analog machine may
not always give exact readings (Riaz, 2014).

It is stipulated in the literature that due to an increase in the
process variability, imprecise measurements affect the perfor-
mance of different schemes in SPM areas. Such adverse effects
can be considered from two general points of view: (1) The mea-
surement errors reduce the performance of monitoring schemes
in detecting out-of-control situations and (2) The measurement
errors increase the rate of false alarms. As the variance of measure-
ment errors increases, the uncertainty due to the increasing in the
process variability will be increased. Hence, the statistical features
of control chart to detect the process disturbances will be affected
especially when the variability due to the measurement errors is
large relative to the process variability. However, in most
researches, the effect of measurement errors on the performance
of various SPM areas is neglected. Fortunately in recent years,
the quality engineering researchers have produced some efforts
to investigate the effect of measurement errors on the performance
of different SPM areas especially for statistical design of various
control charts.

Most of researches have only investigated the effect of mea-
surement errors on the performance of a given SPM procedure
while, some other researches, particularly the recent ones have
attempted to present remedial approaches to compensate for the
effect of measurement errors. Based on a rigorous content analysis
method, in this paper we aim to present an overview on the effect
of measurement errors on different areas of SPM, and to provide a
conceptual classification scheme for articles in this area. For this
purpose, 60 journal papers have been searched and reviewed.
The rest of this article is organized as follows: In Section 2, the sur-
vey methodology based on two major steps for providing and cat-
egorizing the relevant journal papers is discussed. In Section 3, a
conceptual classification scheme to analyze the selected papers
in Section 2 is presented. For this purpose, the questions and the
possible answers from different points of view are described. Cat-
egorizing the relevant papers according to four criteria namely (1)
the number of documents per year, (2) the title of journal consid-
ering the number of relevant publications, (3) the name of author/
co-author considering the number of relevant publications and (4)
the conceptual classification scheme to assess the relevant papers
is presented in Section 4. In Section 5, the results are discussed in
detailed. Finally, in Section 6, several research gaps are identified
and some recommendations for future studies are provided.

2. Survey methodology

In this paper, we present a systematic review based on content
analysis to conceptually classify the researches which have
explored the effect of measurement errors on different areas of
SPM. For more and detailed information about content analysis
methods, please refer to Kolbe and Burnett (1991). A survey based
on content analysis consists of two major steps: (1) defining the
sources and procedures to search for the papers which should be
analyzed and (2) determining the instrumental categories for the
classification of the selected papers (Hachicha & Ghorbel, 2012).
These steps in our survey are discussed as follows:

2.1. Step 1: Sources and procedure to search for and select the papers

To provide the related research sources to conduct our survey,
only journal papers are selected and assessed. The other sources
such as books, MSc/PhD theses, conference papers and so on are
not considered in our work. The relevant papers are gathered via
computerized search using proper keywords such as ‘‘measure-
ment errors”, ‘‘gauge error”, ‘‘gauge measurement errors”, ‘‘impre-
cise measurements”, ‘‘contaminated data”, ‘‘imprecise data” and so
on. Then, the references and citations of each paper are also inves-
tigated to find the previous works. This procedure is continued
progressively and the computerized search is narrowed. In this
procedure, the new relevant papers are added to our analysis dur-
ing the completion of the paper. Note that, to search and select the
relevant papers, main platforms/publishers such as ScienceDirect,
Taylor & Francis, Springer Link, Emerald Insight, JSTOR, Inder-
science, John Wiley and so on are considered.

2.2. Step 2: Classifying the selected papers

After performing the first step, the related papers are classified
in terms of four criteria as follows:

I. The number of documents considering the year of
publication.

II. The title of journals considering the number of relevant
publications.

III. The name of authors/co-authors considering the number of
relevant publications.

IV. The conceptual classification scheme to assess the relevant
papers.



Table 1
List of questions and of possible responses.

1. What is the SPM area?
(1.1) statistical design of control charts
(1.2) economic design/economic-statistical design
(1.3) process capability analysis

2. What type of measurement errors model is used?
(2.1) additive model
(2.2) multiplicative model
(2.3) four-component model
(2.4) two-component model

3. What type of variance is assumed for the measurement error term?
(3.1) constant
(3.2) linearly increasing
(3.3) constant & linearly increasing

4. Type of quality characteristic?
(4.1) univariate
(4.2) multivariate
(4.3) attribute
(4.4) profile
(4.5) fuzzy

5. Type of process?
(5.1) ordinary
(5.2) multi-stage
(5.3) autocorrelated
(5.4) multi-stage & autocorrelated

6. What type of remedial approach is used to account for the effect of measurement errors?
(6.1) no remedial approach
(6.2) multiple measurements approach
(6.3) Other approaches (increasing n, RSS-based approaches, adjusting control limit coefficient, adjusting lower confidence bounds and critical values, inverse method,

MANOVA-based method, Omitting outliers)
(6.4) multiple measurements & other approaches

7. Type of statistic/index which is used to analyze the quality of the process?
7.1. statistical, economic, economic-statistical design of control charts

7.1.1. Shewhart-type statistic (X � R;X � S; T2; . . .)
7.1.2. memory-based statistic (EWMA, CUSUM,. . .)
7.1.3. Shewhart-type & memory-based statistics

7.2. process capability
7.2.1. univariate index (Cp ;Cpk;Cpm ; . . .)
7.2.2. multivariate index (MCp ; . . .)
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The conceptual classification scheme which is also conducted
by Hachicha and Ghorbel (2012) is depicted in Table 1. As seen
in Table 1, to conceptually classify the selected papers in step 1,
seven questions for each paper should be replied. These questions
and the possible responses for each one are discussed in Section 3

3. The questions and possible responses for the conceptual
classification scheme

Here, the questions and the possible responses for each one are
discussed.

3.1. SPM area

� Statistical design of control charts: The main goal of SPM is
online assessment of the process to check its consistency over
time. The most common tool for online assessing of a given pro-
cess is the control chart which was first introduced by Shewhart
in 1924. Designing control charts on the basis of their statistical
performance such as the average run length (ARL) criterion (or
any run length bases property) is referred to as statistical design
of control charts (Woodall, 1985).

� Economic/economic-statistical design of control charts: In
statistical design of control charts, the chart parameters namely
the sample size (n), the sampling frequency (h) and the control
limit coefficient (L) are determined such that the desired values
for the power of chart to detect a given shift ð1� bÞ and the
probability of Type I error ðaÞ are obtained. However, designing
the parameters of a control chart based on statistical criteria
leads to ignore the economic consequences. Determining the
parameters of control charts by considering the economic crite-
ria is called as economic design. It should be noted that, an eco-
nomic design neglects the statistical properties such as
probabilities of Type I and Type II errors. To cover the men-
tioned issues (to improve the statistical features as well as to
minimize the cost), the economic-statistical design of control
charts are used in which both statistical and economic features
of control charts are considered simultaneously.

� Process capability analysis: Determining the statistical ability
of a process to achieve measurable results that satisfy estab-
lished specifications is referred to as process capability analysis.
In the other words, the process capability indices show how
well a process is able to fulfill the customer expectations and
to conform to specification limits.
3.2. The type of measurement errors model

As noted, the relationship between the actual and the observed
values of the sampled units are mostly expressed by the following
three models as follows:

� Additive model: The most commonly used model in the litera-
ture to characterize the relationship between the actual and
observed values of quality characteristics under investigation
is the additive model defined as:
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Y ¼ Aþ BX þ e; ð1Þ
where X is the actual value of the quality characteristic under inves-
tigation which is assumed to follow a normal distribution with
mean lX and variance r2

X and A and B > 1 are two constants which
are fixed. In Eq. (1), e is the measurement errors term which is
assumed to follow a normal distribution with a mean value equal
to 0 and a given variance (constant or non-constant) and it is
assumed to be independent from X. The variance of measurement
errors term is discussed in Section 3.3.
� Multiplicative model: The relationship between the actual and
observed quantities under multiplicative model is:

Y ¼ Xe; ð2Þ
where ewhich is multiplied with the original variable is an inde-
pendent random variable with mean value equal to 1 and a given
variance.

� Four-component measurement errors model: Li and Huang
(2009) proposed this model which contains four types of mea-
surement errors in a multivariate case with p correlated vari-
ables fX1; . . . ;Xpg. The formulation of this model for variable
Xj is expressed as follows:

Yj ¼ bj þ sjXj þ cTj V j þ ej; ð3Þ
where

– bj is the measurement error caused by sensor setup/calibration
bias or drift when sensors are used in harsh environments.

– sj is the measurement sensitivity.
– cj represents the relationship between observed and actual
quantities which also depends on the other variables (Vj) where
Vj 2 fX1; . . . ;Xpg but Vj R Xj.

– ej � Nð0; varðejÞÞ denotes the sensor noise.
� Two-component measurement errors (TCME) model: This
type of error model is defined as follows:

Y ¼ Aþ BXeg þ e; ð4Þ
where A and B are the intercept and slope constants, e and g are
additive and multiplicative random disturbances, respectively
which are independently normally distributed variables with a
mean equal to 0 and a given variance.

3.3. Variance of measurement error term

� Constant: In most researches in the literature, the variance of
the measurement errors term, e is assumed to be a constant
value namely r2

e . For example, in an additive covariate model
with constant variance for the measurement errors term, Y will
be a normally distributed variable as follows:

Y � NðAþ BlX ;B
2r2

X þ r2
e Þ: ð5Þ

Based on Eq. (5), it is obvious that due to the measurement
errors term, the variance of Y will be larger than the variance
of X. Therefore, in the presence of measurement errors, the pro-
cess variability increases.

� Linearly increasing: In some applications, the variance of the
measurement errors linearly depends on the process level
and, therefore, the constant variance assumption is relaxed. In
this case, e is a normally distributed variable with mean equal
to 0 and variance C þ DlX . Hence, we have Y � NðAþ BlX ;

B2r2
X þ C þ DlXÞ; where C and D are two other constants which

are fixed.
� Constant & linearly increasing: In addition to the researches
assuming constant and linearly increasing variance, the effect
of measurement errors with both constant and linearly increas-
ing variance are addressed in some papers such as Maravelakis,
Panaretos, and Psarakis (2004) and Haq, Brown, Moltchanova,
and Al-Omari (2015).

3.4. Type of quality characteristics

We classify the literature of the measurement errors effect on
SPM into five groups namely univariate, multivariate, attribute,
profile as well as fuzzy.

� Univariate: A single quality characteristic which is expressed in
a continuous scale such as size, weight, volume, time and so on.

� Multivariate: Several correlated quality characteristics which
are expressed via a continuous scale.

� Attribute: One quality characteristic which is countable and
characterized in a discrete scale.

� Profile: Sometimes, the quality of a product or a process is sum-
marized by a functional relationship between a response vari-
able and one or more explanatory variables which is referred
to as ‘‘profile”.

� Fuzzy: Quality characteristics which contain some sources of
uncertainties due to human judgment, evaluations and decisions
and are expressed by fuzzy numbers and/or linguistic variables.

3.5. Process type

� Multi-stage process: In multi-stage processes, the manufactur-
ing process includes several stages. In such situations, the qual-
ity of the current stage is affected by the outcome of the
previous stage(s).

� Autocorrelated process: In autocorrelated processes, the inde-
pendency assumption of consecutive sampled points is violated.
For instance, in manufacturing or non-manufacturing environ-
ments when the measurements are gathered at short time inter-
vals, it is reasonable that the observations become autocorrelated.

� Multi-stage and autocorrelated process: In addition to the
mentioned categories, there is a single research in the literature
where the effect of imprecise measurements caused by mea-
surement errors on multi-stage processes is addressed in which
the observation are autocorrelated.

� Ordinary process: Other processes which are not classified as
multi-stage or autocorrelated processes are considered as ordi-
nary processes.

3.6. Type of remedial approach

� No remedial approach: As explained, the performance of con-
trol charts is significantly affected by the measurement errors.
Although, it is important to provide some remedial approaches
to decrease the adverse effect of measurement errors on SPM
procedures, however, in many researches, using remedial
approaches is ignored and only the effect of measurement
errors on the performance of SPM procedures is investigated.

� Multiple measurements approach: One of the most common
remedial approaches to compensate for the effect of contami-
nated data on SPM procedures is the ‘‘multiple measurements”
approach which was first introduced by Linna and Woodall
(2001). In this approach, several measurements per item of each
sample are taken instead of a single measurement and then the
average of the measured values for each item is calculated. As a
result, the variance of the measurement error component in the
multiple measurements approach will be smaller than the one
when using a single measurement.

� Other approaches: As noted previously, the most commonly
used method to improve the performance of SPM procedures
in the presence of measurement errors is the multiple measure-
ments approach. However, some other approaches namely
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increasing sample size (see Abbasi (2016) for example), RSS-
based methods (discussed in Ghashghaei, Bashiri, Amiri, and
Maleki (in press) and Haq et al. (2015), adjusting control limit
coefficients (see Riaz (2014)), adjusting lower confidence
bounds and critical values for process capability analysis area
(such as in Pearn and Liao (2005)), inverse method (utilized in
Villeta, Rubio, Sebastián, and Sanz (2010)), multivariate analysis
of variance (MANOVA)-based method (suggested by Scagliarini
(2011)) as well as omitting outliers via IQR-based approaches
(see Amiri, Ghashghaei, and Maleki (in press)) are also used in
some papers.

� Multiple measurements & other approaches: The fourth pos-
sible category in this regard is devoted to the researches which
contain multiple measurement approach which is used along
with the other remedial approaches.

3.7. Type of statistic/index used to analyze the process

The selected papers in our survey are also evaluated based on
the type of the statistic/index which is used to analyze the out-
come of the process. To design control charts from a statistical,
economic or an economic-statistical point of view, different statis-
tics have been used to monitor the process mean, the process vari-
ability as well as the joint process mean and variability under
different assumptions and situations. The statistics in this regard
are classified as follows:

� Shewhart-type statistic: This type of control chart which is first
proposed by Shewhart in 1924 is used to monitor either vari-
able or attribute quality characteristics. The Shewhart (or
memory-less) statistics only use the information of the last
sample taken from the process and they are particularly sensi-
tive to the detection of large process shifts.

� Memory-based statistic: In this case the current value of the
monitored statistic depends on the current observation as well
as on the previous ones. This approach allows to increase the
sensitivity of memory-based charts such as exponentially
weighted moving average (EWMA) and cumulative sum
(CUSUM) charts to detect small and moderate process changes.

� Shewhart-type & memory-based statistics: In addition to the
mentioned categories, there are few researches in which both
Shewhart-type and memory-based statistics are used together
to monitor different processes when the measurement errors
exist.

In process capability analysis area, some attentions are also
devoted to process capability analysis using different indices either
in univariate or multivariate cases.
4. Results

To analyze the relevant researches in the literature and to illus-
trate the differences between them, a classification scheme under
the mentioned criteria is conducted in this section.
4.1. Number of documents considering the year of publication

Fig. 1 illustrates the number of related papers published in the
area of the measurement errors effect on SPM considering the year
of publication. As shown in Fig. 1, at least three papers per year
have been published from 2005 to 2016, except 2008 with only
one paper. Fig. 1 shows that the number of publications has
increased in recent years especially from 2001. This Figure clearly
reveals an increasing interest to explore the effect of measurement
errors on different areas of SPM.
4.2. The title of journal considering the number of relevant
publications

The results of our analytical study concerning the second fea-
ture are summarized in Table 2. Table 2 shows that the documents
are distributed over 35 different journals. The first and second
journals in terms of frequency of the published papers are ‘‘Quality
and Reliability Engineering International” and ‘‘Journal of Applied
Statistics” with nine and six papers, respectively. These journals
are followed by ‘‘Journal of Quality Technology”, ‘‘Journal of Statis-
tical Computation and Simulation” and ‘‘The International Journal
of Advanced Manufacturing Technology” with three documents
for each of them.

4.3. The name of author/co-author considering the number of relevant
publications

Table 3 lists the names of researchers who published the papers
dealing with the effects of measurement errors on SPM procedures
along with their affiliations and countries. As it is seen, according
to the number of documents, Philippe Castagliola and Michele Sca-
gliarini both with six papers are the most active authors dealing
with this area.

4.4. Conceptual classification scheme to assess the relevant papers

Here, all 60 relevant papers concerning the effect of measure-
ment errors on different areas of SPM are listed in Table 4 with
respect to the presented conceptual classification scheme. The
results of Table 4 are also summarized in Table 5. Note that, the
reviewed papers are categorized into two time periods 1954–
2006 (from when the first relevant paper is published) and
2007–2016 (i.e. the past decade). The analysis of the literature with
respect to the presented conceptual classification scheme is
detailed in Section 5. In Section 5, the discussions for each men-
tioned time periods are also provided with respect to the each
question given in Table 1.

5. Discussion

In this section, an analytic view of the selected papers with
respect to each question in Section 2 is provided.

5.1. Analysis of selected papers with respect to the SPM area

The distribution of the reviewed journal papers concerning the
SPM area is summarized in Fig. 2. As indicated in Fig. 2, the most



Table 3
Top researchers by considering the number of related publications.

Author Affiliation/country Documents

Castagliola, P. Université de Nantes & IRCCyN UMR CNRS 6597, Nantes, France 6
Scagliarini, M. Department of Statistics, University of Bologna, Bologna, Italy 6
Chakraborty, A. B. Department of Statistics, St. Anthony’s College, Shillong, Meghalaya, India 4
Hu, X. L. School of Automation, Nanjing University of Science and Technology, Nanjing, China 4
Khoo, M. B. C. School of Mathematical Sciences, University Sains Malaysia, Malaysia 4
Khurshid, A. Department of Mathematical and Physical Sciences, College of Arts and Sciences, University of Nizwa, Oman 4
Liao, M. Y. Department of Finance and Banking, Yuanpei University, Hsinchu, Taiwan 4
Maleki, M. R. Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran 4
Pearn, W. L. Department of Industrial Engineering and Management, National Chiao Tung University, Taiwan 4
Sun, J. S. School of Automation, Nanjing University of Science and Technology, Nanjing, China 4
Abbasi, S. A. Department of Statistics, The University of Auckland, Auckland, New Zealand 3
Amiri, A. Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran 3
Bordignon, S. Department of Statistics, University of Padova, Italy 3
Ghashghaei, R. Department of Industrial Engineering, Faculty of Engineering, Shahed University, Tehran, Iran 3
Yang, S. F. Department of Statistics, National Chengchi University, Taipei, Taiwan 3
Grau, D. Laboratory of Applied Mathematics, Universit0e de Pau et des Pays de l’Adour, Bayonne, France 2
Hamadani, A. Z. Department of Industrial Engineering, Isfahan University of Technology, Iran 2
Linna, K. W. Auburn University at Montgomery, Alabama, United States 2
Linna, K. W. Auburn University at Montgomery, Alabama, United States 2
Linna, K. W. Auburn University at Montgomery, Alabama, United States 2
Rahim, M. A. Faculty of Business Administration, University of New Brunswick, Fredericton, Canada 2
Saghaei, A. Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran 2
Shishebori, D. Department of Industrial Engineering, Isfahan University of Technology, Iran 2
Stemann, D. Department of Economics, University of Hagen, Hagen, Germany 2
Woodall, W. H. Department of Statistics Virginia Tech Blacksburg, United States 2
Wu, C. W. Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan 2

Table 2
Top journals by considering the number of related publications.

Journal title Number of papers Percentage

Quality and Reliability Engineering International 9 15
Journal of Applied Statistics 6 10
Journal of Quality Technology 3 5
Journal of Statistical Computation and Simulation 3 5
The International Journal of Advanced Manufacturing Technology 3 5
IIE Transactions 2 3.33
International Journal of Production Research 2 3.33
Communications in Statistics-Theory and Methods 2 3.33
Economic Quality Control 2 3.33
IEEE Transactions on Semiconductor Manufacturing 2 3.33
International Journal for Quality Research 2 3.33
Computers & Operations Research 1 1.67
Quality Engineering 1 1.67
Quality & Quantity 1 1.67
Journal of Analytical Chemistry 1 1.67
Transactions of the Institute of Measurement and Control 1 1.67
Journal of Statistical Theory and Applications 1 1.67
Industrial Quality Control 1 1.67
Statistical Methods and Applications 1 1.67
Annals of Management Science 1 1.67
Microelectronics Reliability 1 1.67
Chinese Journal of Applied Probability 1 1.67
Journal of Manufacturing Systems 1 1.67
International Journal of Quality Engineering and Technology 1 1.67
International Journal of Metrology and Quality Engineering 1 1.67
European Journal of Industrial Engineering 1 1.67
Statistica Sinica 1 1.67
Engineering, Technology & Applied Science Research 1 1.67
International Journal of Engineering 1 1.67
Journal of Testing and Evaluation 1 1.67
AStA Advances in Statistical Analysis 1 1.67
International Journal of Quality & Reliability Management 1 1.67
Journal of Manufacturing Systems 1 1.67
Statistical Papers 1 1.67
Asian Journal on Quality 1 1.67
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efforts i.e. 60% (36 from 60 papers) have been conducted on the
statistical design of control charts in the presence of measurement
errors. In the first work in this regard, Bennett (1954) studied the
effect of measurement errors on the X control chart using the
model Y ¼ X þ e, where Y and X are the measured and the actual
quantities, respectively, while e is the random error term due to



Table 4
Classification of SPM articles in the presence of measurement errors.

Paper SPM area Model Error variance Type of data Process type Remedial approach Statistic/index

Statistical
design

E/E-S
design

Process
capability

Univariate Multivariate Attribute Profile Fuzzy

Bennett (1954) U Additive Constant U Ordinary – X
Rahim (1985) U Additive Constant U Ordinary – X
Kanazuka (1986) U Additive Constant U Ordinary – X � R
Mittag and Stemann (1998) U Additive Constant U Ordinary – X � S
Stemann and Weihs (2001) U Additive Constant U Ordinary – X=S,EWMA� X=S
Linna et al. (2001) U Additive Constant U Ordinary – v2

Linna and Woodall (2001) U Additive Constant/linearly
increasing

U Ordinary Multiple
measurements

X, S2

Bordignon and Scagliarini (2001) U Additive Constant U Ordinary – CP

Yang (2002) U Additive Constant U Ordinary – asymmetric
X � S

Bordignon and Scagliarini (2002) U Additive Constant U Ordinary – CP & Cpk

Scagliarini (2002) U Additive Constant U Autocorrelated – CP

Shore (2004) U Additive Constant U Ordinary – X; S2

Maravelakis et al. (2004) U Additive Constant/linearly
increasing

U Ordinary Multiple
measurements

EWMA

Yang and Yang (2005) U Additive Constant U Multi-stage &
autocorrelated

– Shewhart and
cause-selecting
charts

Pearn and Liao (2005) U Additive Constant U Ordinary Adjusting lower
confidence bounds
and critical values

Cpk

Pearn et al. (2005) U Additive Constant U Ordinary Adjusting lower
confidence bounds
and critical values

Cp & Cpm

Chang and Gan (2006) U Additive Constant U Ordinary – Shewhart
Bordignon and Scagliarini (2006) U Additive Constant U Ordinary – Cpm

Pearn and Liao (2006) U Additive Constant U Ordinary Adjusting lower
confidence bounds
and critical values

CPU & CPL

Yang et al. (2007) U Additive Constant U Multi-stage – EWMA and
cause-selecting
charts

Huwang and Hung (2007) U Additive Constant U Ordinary – sample
generalized
variance and LRT
charts

Pearn and Liao (2007) U Additive Constant U Ordinary Adjusting lower
confidence bounds
and critical values

CP

Wang (2008) U Additive Constant U Ordinary – Spk
Xiaohong and Zhaojun (2009) U Additive Constant U Autocorrelated – CUSUM
Li and Huang (2009) U 4 types of

errors
Constant U Ordinary – Shewhart &

EWMA
Shishebori and Hamadani (2009) U Additive Constant U Ordinary Adjusting lower

confidence bounds
and critical values

MCp

Abbasi (2010) U Two-
component

Constant U Ordinary Multiple
measurements

EWMA

Shishebori and Hamadani (2010) U Additive Constant U Ordinary – MCp

Villeta et al. (2010) U Additive Constant U Ordinary Inverse method CP & CPk
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Scagliarini (2010) U Additive Constant U Autocorrelated – Cpk

Costa and Castagliola (2011) U Additive Constant U Autocorrelated Multiple
measurements

X

Scagliarini (2011) U Additive Constant U Ordinary MANOVA-based
method

multivariate
Cp;Cpk;Cpm;Cpmk

Wu (2011) U Additive Constant U Ordinary – Cpk

Grau (2011) U Additive Constant U Ordinary Adjusted lower
confidence bound

C00
pðu;vÞ

Moameni et al. (2012) U Additive Constant U Ordinary – fuzzy eX � eR
Maravelakis (2012) U Additive Constant/linearly

increasing
U Ordinary Multiple

measurements
CUSUM

Wu and Liao (2012) U Additive Constant U Ordinary Generalized
inference approach

Spk

Chakraborty and Khurshid
(2013a)

U Additive Constant U Ordinary – Shewhart

Chakraborty and Khurshid
(2013b)

U Additive Constant U Ordinary – Shewhart

Grau (2013) U Additive Constant U Ordinary Adjusted critical
value

Cu
pðu; vÞ;Cl

pðu; vÞ

Khurshid and Chakraborty
(2014)

U Additive Constant U Ordinary – Shewhart

Riaz (2014) U Additive Constant U Ordinary Adjusting the
control limit
coefficient

X;R; S2

Abbasi (2014) U Two-
component

Constant U Ordinary – Shewhart,
EWMA and
CUSUM

Saghaei et al. (2014) U Additive Constant U Ordinary Multiple
measurements

EWMA

Baral and Anis (2015) U Additive Constant U Ordinary – Cpm

Chakraborty and Khurshid
(2015)

U Additive Constant U Ordinary – ANOM chart

Ding and Zeng (2015) U Additive Constant U Multi-stage – OLS and TLS
based charts

Haq et al. (2015) U Additive Constant/linearly
increasing

U Ordinary RSS, MRSS, IRSS,
IMRSS, multiple
measurements

EWMA

Hu, Castagliola, Sun, and Khoo
(2015)

U Additive Constant/linearly
increasing

U Ordinary Multiple
measurements

Synthetic X

Noorossana and Zerehsaz (2015) U Additive Constant U Ordinary – EWMA-3,
EWMA/R, T2

Abbasi (2016) U Two-
component

Constant U Ordinary Multiple
measurements,
increasing n

EWMA

Amiri et al. (in press) U Additive Constant U Ordinary IQR based methods,
increasing n

multivariate ELR

Daryabari et al. (in press) U Additive Constant U Ordinary – MAX-EWMAMS
Ghashghaei et al. (in press) U Additive Constant U Ordinary RSS, multiple

measurements
ELR

Hu, Castagliola, Sun, and Khoo
(2016a)

U Additive Constant/linearly
increasing

U Ordinary Multiple
measurements

adaptive (VSS) X

Hu, Castagliola, Sun, and Khoo
(2016b)

U Additive Constant U Ordinary Multiple
measurements

adaptive (VSI) X

Hu et al. (in press) U Additive Constant U Ordinary Multiple
measurements

upper-sided

synthetic S2

(continued on next page)
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the measurement errors. Then, Kanazuka (1986) used the same
model of Bennett (1954) and investigated the effect of measurement
errors on the performance of the X=R control charts. He also con-
cluded that the efficiency of the X=R control charts is strongly
affected by the gauge measurement errors. Most researches in the
area of statistical design of control charts have proposed to monitor
either the process mean or the process variability, separately. How-
ever, recently some researchers such as Amiri et al. (in press),
Daryabari, Hashemian, Keyvandarian, and Shekary (in press),
Ghashghaei et al. (in press), Khati Dizabadi, Shahrokhi, and Maleki
(in press), and Maleki, Amiri, and Ghashghaei (2016) have limited
their focus on the simultaneous monitoring of process mean and
variability. As illustrated in Table 5, the number of reviewed journal
papers in the case of statistical design of control charts under mea-
surement errors has increased from the first period (1954–2006)
with 10 papers to 26 papers in the second one (2007–2016).

Fig. 2 shows that the effect of measurement errors on economic/
economic-statistical design of control charts has been investigated
by 5 journal papers only (8.3% of the total reviewed papers) namely
Rahim (1985), Yang (2002), Saghaei, Fatemi Ghomi, and Jaberi
(2014), Abbasi (2016), and Hu, Castagliola, Sun, and Khoo (in
press). It is also seen in Fig. 2 that the statistical design of control
charts is followed by process capability analysis with totally 19 doc-
uments (31.7% of the total reviewed papers). The first paper which
dealt with the problem of measurement errors effect on process
capability analysis area is conducted by Bordignon and Scagliarini
(2001). They conducted a statistical analysis on the simplest and
the most common process capability index namely Cp when the
observations are contaminated by measurement errors. After that,
some other researches have been conducted to assess the effect of
gauge measurement errors on different process capability indices
in both the univariate and multivariate cases. Table 5 shows that
all reviewed papers in the process capability analysis area during
the period 1954–2006 are presented in the case of a univariate qual-
ity characteristic and no effort has been performed to investigate the
effect of gauge measurement errors on multivariate process capabil-
ity indices. However, in the second period (between 2007 and 2016),
three journal papers have been published in this regard in the case of
multivariate quality characteristics.
5.2. Analysis on the type of measurement errors model

The distribution of the reviewed papers considering the type of
covariate model is illustrated in Fig. 3. As illustrated in Fig. 3, most
papers concerning the effect of measurement errors on SPM (56
from 60 papers, i.e. about 93.3%) have used an additive model to
define the relationship between actual and measured quantities
while the effect of imprecise observations using a multiplicative
model has been clearly neglected in the literature. As it can be seen
in Table 5, all researches during the period 1954–2006 have been
proposed based on an additive covariate model. During the period
2007–2015, four researches (9.76%) have limited their focus on the
other covariate models. In this regard, Li and Huang (2009) studied
themonitoring and the fault detection of multivariate processes con-
sidering four types of measurement errors, including sensor bias,
sensitivity, noise and dependency of the relationship between the
true and the measured values of a variable on the other ones. The
effect of imprecise observations by gauge measurement errors con-
sidering TCME model is investigated by Abbasi (2010, 2014, 2016).
5.3. Analytical view on the variance of measurement errors term

The distribution of the reviewed journal papers according to the
variance of measurement errors term is illustrated in Fig. 4. As seen
in Table 4, all the papers in our survey from 1954 to 2011 expect



Table 5
Summary of the results for time periods 1954–2006 and 2007–2016.

Classification criteria 1954–2006 (19 papers) 2007–2016 (41 papers)

Number Percentage Number Percentage

What is the SPM area?
(1.1) statistical design of control charts 10 52.63 26 63.41
(1.2) economic design/economic-statistical design 2 10.53 3 7.32
(1.3) process capability analysis 7 36.84 12 29.27

What type of measurement errors model is used?
(2.1) additive model 19 100 37 90.24
(2.2) multiplicative model 0 0 0 0
(2.3) four-component model 0 0 1 2.44
(2.4) two-component model 0 0 3 7.32

What type of variance is assumed for the measurement error term?
(3.1) constant 17 89.47 35 85.36
(3.2) linearly increasing 0 0 2 4.88
(3.3) constant & linearly increasing 2 10.53 4 9.76

Type of quality characteristic?
(4.1) univariate 18 94.74 29 70.73
(4.2) multivariate 1 5.26 7 17.07
(4.3) attribute data 0 0 3 7.32
(4.4) profile 0 0 1 2.44
(4.5) fuzzy 0 0 1 2.44

Type of process?
(5.1) ordinary 17 89.48 36 87.80
(5.2) multi-stage 0 0 2 4.88
(5.3) autocorrelated 1 5.26 3 7.32
(5.4) multi-stage & autocorrelated 1 5.26 0 0

What type of remedial approach is used to account for the effect of measurement errors?
(6.1) no remedial approach 14 73.68 20 48.78
(6.2) multiple measurements approach 2 10.53 9 21.95
(6.3) other approaches 3 15.79 9 21.95
(6.2) multiple measurements & other approaches 0 0 3 7.32

Type of statistic/index which is used to analyze the quality of the process?
(7.1) statistical, economic, economic-statistical design of control charts
7.1.1. Shewhart-type statistic 10 83.34 14 48.28
7.1.2. memory-based statistic 1 8.33 12 41.38
7.1.3 Shewhart & memory-based statistics 1 8.33 3 10.34

(7.2) process capability
7.2.1. univariate index 7 100 9 75
7.2.2. multivariate index 0 0 3 25

economic/economic-statistical design
process capability analysis
statistical design of control charts

60.0%

31.7%

8.3%

Fig. 2. Distribution of the selected papers according to the SPM area.

four-component
additive
two-component

5.0%

93.3%

1.7%

Fig. 3. Distribution of the selected papers according to the measurement errors
model.
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two ones namely Linna and Woodall (2001) as well as Maravelakis
et al. (2004) assumed a constant variance for the measurement
errors term. After 2011, more attentions have been paid to linearly
increasing variance for the measurement errors term. Although
there is an increasing trend to explore the effect of measurement
errors with a linearly increasing variance, however, the constant
variance case is still the most common type in both periods
1954–2006 and 2007–2016. Table 5 shows that the percentage of
reviewed papers considering a linearly increasing variance for
the measurement errors term has increased from 10.53% (i.e. 2
papers) during the period 1954–2006 to 14.64% during the period
2007–2016 (i.e. 6 papers). The effect of measurement errors with
linearly increasing variance on SPM is also discussed in
Maravelakis (2012), Haq et al. (2015), Hu, Castagliola, Sun, and
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Fig. 5. Distribution of the selected papers according to the type of quality
characteristic.
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Fig. 6. Distribution of the selected papers according to the process type.
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Fig. 4. Distribution of the selected papers according to variance of measurement
error term.
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Khoo (2015, 2016a), Khati Dizabadi et al. (in press) and Maleki
et al. (2016).
5.4. Analytical view of the literature under the type of quality
characteristics

The frequency of the relevant papers according to the type of
quality characteristic is shown in Fig. 5. From the first research
concerning the effect of imprecise data on SPM procedures pro-
posed by Bennett (1954), most efforts have been devoted to the
univariate case, i.e. 78.3% of the reviewed journal papers. The per-
centage of papers which addresses multivariate quality character-
istics are ranked second after the univariate case with 13.3% of the
total reviewed papers. During the period 1954–2006, all the
reviewed journal papers have focused on the univariate quality
characteristic case, except Linna, Woodall, and Busby (2001) which
is the first research concerning the effect of measurement errors on
multivariate process data. Assessing the effect of imprecise obser-
vations concerning univariate quality characteristic is still the most
frequent area during the period 2007–2016 with 70.73% of total
reviewed papers in this period. However, more efforts in compar-
ison with period 1954–2006 have been conducted in 2007–2016
concerning other quality situations namely multivariate, attribute,
profile and fuzzy process data.

The effect of measurement errors on the performance of SPM
under multivariate quality characteristics was firstly studied by
Linna et al. (2001) by considering a v2 control chart and assuming
the following covariate model:
Y ¼ Aþ BXþ e; ð6Þ
where X is a p� 1 vector of the actual quality characteristics which
is assumed to follow a multivariate normal distribution with mean
vector li and variance-covariance matrix Rp. In Eq. (6), A is a p� 1
vector of constants, B is an invertible p� p matrix of constants, and
e is a p� 1 normal random vector with mean 0 and constant covari-
ance matrix Rm which is assumed to be independent of X. Obvi-
ously, Y, is a p� 1 vector of measured quality characteristics
which follows a multivariate normal distribution as follows:
Y � MVNðAþ Bli;BRpB
T þ RmÞ: ð7Þ
Linna et al. (2001) presented two bivariate examples and found that
the v2 control chart is affected by measurement errors. The effect of
gauge measurement errors on different SPM procedures considering
multivariate quality characteristics is also evaluated by Huwang
and Hung (2007), Shishebori and Hamadani (2009, 2010), Li and
Huang (2009), Scagliarini (2011), Amiri et al. (in press), Maleki
et al. (2016). Taking into account gauge measurement errors in con-
structing control charts to monitor attribute quality characteristics
has been examined by Chakraborty and Khurshid (2013a, 2013b),
and Khurshid and Chakraborty (2014).

The effect of measurement errors on monitoring fuzzy and pro-
file quality characteristics has been addressed as follows: For fuzzy
quality characteristic, Moameni, Saghaei, and Ghorbani
Salanghooch (2012) investigated the effect of measurement errors

on eX � eR fuzzy control charts to detect out-of-control situations in
terms of the average run length (ARL) criterion using the linear
covariate model Y ¼ Aþ BX þ e. Through simulation studies, they
showed that a smaller value of the measurement errors variance

leads to a greater effectiveness of the eX � eR fuzzy control charts.
They also noted that as the slope parameter of the linear covariate

model increases, the effectiveness of eX � eR fuzzy control charts
improves. Noorossana and Zerehsaz (2015) studied the effect of
measurement errors on three common control charts for monitor-
ing simple linear profiles including EWMA� 3, EWMA=R and T2

control charts in the case of random explanatory variable. They uti-
lized a simulation study based on the ARL criterion and proved that
both in-control and out-of-control performances of all considered
control charts are significantly affected by the measurement errors.
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5.5. Investigating the relevant paper according to the process type

The distribution of the reviewed papers according to the type of
process is investigated in Table 4 and depicted in Fig. 6. As seen in
Fig. 5, about 88.3% of the total related documents belong to the
ordinary processes. However, two and four papers are devoted to
the multi-stage and autocorrelated processes, respectively. As
seen, only one paper is available in the literature for multi-stage
process in which the observations are autocorrelated. As seen in
Table 5, the percentage of the reviewed papers for ordinary and
autocorrelated processes has not changed significantly from 1954
to 2006 to 2007–2016. However, the number of published
documents for multi-stage processes has increased from zero
during the period 1954–2006 to 2 during 2007–2016. It seems
that more attentions are required by the quality engineering
researchers to explore the effect of gauge measurement errors on
multi-stage, autocorrelated as well as multi-stage autocorrelated
processes.

The papers dealing with the impact of measurement errors on
SPM methods with autocorrelated observations have been
addressed by Scagliarini (2002, 2010), Xiaohong and Zhaojun
(2009), and Costa and Castagliola (2011). The Effect of gauge mea-
surement errors on monitoring multi-stage processes have been
studied by Yang, Ho, and Rahim (2007) and Ding and Zeng
(2015). It is also worth to mention that the effect of imprecise data
caused by measurement errors on multi-stage processes in the
case of autocorrelated observations has been investigated by
Yang and Yang (2005).
5.6. Analysis of literature according to the type of remedial approach

As noted previously, it is proved in the literature that measure-
ment errors have a severe effect in different SPM areas. Hence, to
avoid misleading results, it is important to reduce such effects as
much as possible. Table 5 shows that most of the reviewed journal
papers during the period 1954–2006 (73.68%) have only concen-
trated on exploring the effects of gauge measurement errors on
the performance of different SPM methods with no proposal for
removing such effects. After 2006, proposing remedial approaches
to decrease the effect of measurement errors on different SPM
areas have attracted more attentions from quality engineering
researchers such that the percentage of researches with no reme-
dial approaches has decreased from 73.68% during the period
1954–2006 to 48.78% during the period 2007–2016.

As noted, 36 researches of the total reviewed journal papers are
devoted to the effect of measurement errors on statistical design of
control charts. From them, only 13 papers contain at least one
remedial approach to decrease such effects, while, in 23 docu-
ments no remedial approach is available. It is worth to mention
that in the area of statistical design of control charts, the researches
containing at least one remedial approach has increased from 20%
(i.e. 2 papers out of 10 ones) between 1954 and 2006 to 42.31% (i.e.
11 papers out of 26 ones) between 2007 and 2016. It is seen from
Table 4 that the most common remedial approach to decrease the
measurement errors effect on the statistical design of control
charts is the multiple measurement approach, a method which is
used in 11 papers from 13 ones. Multiple measurement approach
to decrease the effect of measurement errors on the statistical
design of different control charts has firstly been suggested by
Linna and Woodall (2001). Then, Maravelakis et al. (2004) exam-
ined the effect of measurement errors on the performance of the
EWMA control chart to detect out-of-control changes using the lin-
ear covariate model as in Eq. (1). They utilized multiple measure-
ments on each sampled unit to compensate for the effect of
measurement errors. For this purpose, they collected k
measurements for each of n observations of Y and calculated the

overall mean of these observations Y with the following variance:

B2r2
X

n
þ r2

e
nk

: ð8Þ

They also evaluated the performance of the EWMA control chart in
the presence of measurement errors with linearly increasing vari-
ance. They showed that measurement errors adversely affect the
performance of the EWMA control chart for monitoring the process
mean. Using other remedial approaches for the statistical design of
control charts in the presence of gauge measurement errors has
been investigated by Riaz (2014), Haq et al. (2015), Amiri et al. (in
press), and Ghashghaei et al. (in press). It is worth to mention that
in Haq et al. (2015) and Ghashghaei et al. (in press), the multiple
measurements method is used beside of the other remedial
approaches.

Concerning the effect of imprecise data on calculating the pro-
cess capability indices, it is indicated in Table 4 that 10 out of 19
relevant journal papers contain at least one remedial approach. It
is interesting to find that the percentage of papers falling in the
area of process capability analysis which contain at least one reme-
dial approach has increased in recent years (from 42.86% during
the period 1954–2006 to 58.33% during the period 2007–2016).
The remedial approaches to compensate for the effect of measure-
ment errors on estimating different process capability indices are
discussed in Pearn and Liao (2005, 2006, 2007), Pearn, Shu, and
Hsu (2005), Shishebori and Hamadani (2009), Villeta et al.
(2010), Scagliarini (2011), Grau (2011, 2013), Wu and Liao (2012).

Concerning the effect of imprecise measurements on economic
as well as economic-statistical design of control charts, only 2
papers are provided with no proposal to lessen such effects while,
in 3 of them, namely Saghaei et al. (2014), Abbasi (2016), and Hu
et al. (in press) remedial approaches to compensate for the effect
of imprecise measurements are discussed.
5.7. Analysis of the literature according to the type of statistic/index to
analyze the quality/capability of the process

The statistics/indices used to assess the quality/capability of the
process are summarized in the last column of Table 4. As it can be
noted in Table 5, there is an increasing trend to use memory-based
statistics instead of memory-less statistics in statistical design,
economic design and economic-statistical design of control charts
when measurements are imprecise. The distribution of reviewed
papers according to the type of statistic indicates that the percent-
age of memory-based statistics in statistical design, economic
design and economic-statistical design of control charts has
increased significantly in recent years from 16.66% (between
1954 and 2006) to 51.72% (between 2007 and 2016). In addition,
all the published journal papers between 1954 and 2006 concern-
ing the effect of measurement errors on calculating process capa-
bility indices have focused on the univariate case. However,
during the period 2007–2016, 25% of the relevant documents (i.e.
3 of them) were devoted to the multivariate case. The results also
confirm that Cp;Cpk and Cpm, respectively, are the most common
indices to estimate the process capability in the presence of gauge
measurement errors.
6. Conclusions and directions for future research

In this section, research gaps related to the effect of measure-
ment errors on different areas of SPM are highlighted. Theses
research gaps are given as follows:
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(1) It is important to explore the effect of contaminated mea-
surements on new SPM areas such as monitoring processes
with big data, high dimensional data and social networks.

(2) Most researches in this area have considered an additive
covariate model to represent the relationship between the
actual and measured quantities. More attention should be
considered to other models such as the multiplicative and
TCME models.

(3) In many industrial or service systems, the quality of a pro-
cess is expressed by the combination of correlated quality
characteristics. However, as explained, most researches
(about 92.5%) have only investigated the effect of the mea-
surement errors on univariate processes rather than on mul-
tivariate processes. Therefore, further studies should be
undertaken to investigate the effect of measurement errors
on monitoring multivariate processes.

(4) In recent years, the researchers have had considerable
attempts to explore the effect of measurement errors on dif-
ferent monitoring schemes. However, the effect of measure-
ment errors on change point estimators, after getting a signal
from a control chart, has been neglected in the literature.

(5) To the best of our knowledge, only two researches are avail-
able in the literature concerning the effect of measurement
errors on monitoring adaptive type control charts. Conse-
quently, this gap is a motivation for the researchers.

(6) There is only one research in the literature for profile mon-
itoring in the presence of measurement errors in which the
simple linear profile is considered. The effect of measure-
ment errors on the performance of control charts for moni-
toring the other types of profile such as multivariate
profiles, generalized linear model-based profiles, multiple
linear profiles, polynomial profiles can be studied in future
researches.

(7) In recent years, some efforts have been performed to explore
the effect of measurement errors on simultaneous monitor-
ing of process mean and variability. However, exploring such
undesired effects by considering the other error models such
as the multiplicative and TCME models is recommended.

(8) Considering the literature, the effect of measurement errors
on monitoring autocorrelated processes have been investi-
gated in few researches. Also, these researches have consid-
ered only one quality characteristic. Consequently, exploring
the effect of measurement errors on monitoring multivariate
processes with autocorrelated observations is recom-
mended. On the other hand, the effect of measurement
errors on monitoring autocorrelated processes considering
different time series models such as moving average (MA),
autoregressive moving average (ARMA) and autoregressive
integrated moving average (ARIMA) is suggested.

(9) It is useful for future researches to incorporate measurement
error models into self-starting control charts in which col-
lecting sufficient large samples for Phase I analysis is not
possible.

(10) All of the papers related to process capability indices in the
presence of measurement errors have assumed an additive
model with constant error variance. Investigating the other
measurement errors models such as the multiplicative and
TCME can be a fruitful area for future researches.
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