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Abstract: In recent years, the quality practitioners have concentrated on 
exploring the effect of measurement errors on the performance of control 
charts. To the best of our knowledge, the effect of measurement errors on 
simultaneous monitoring of the process mean and the process variability is 
neglected in the literature. In this paper, the effect of measurement errors on 
detecting and diagnosing performance of one of the most common 
simultaneous monitoring approaches in the literature is investigated. Two 
approaches namely multiple measurement approach as well as increasing 
sample size are suggested for compensating for the effect of measurement 
errors. The results of simulation study show that the measurement errors can 
adversely affect the detecting performance of maximum exponentially 
weighted moving average and mean squared deviation (MAX-EWMAMS) 
control chart while the effect of measurement errors on diagnosing performance 
of this control chart is negligible. The results also represent that both tasking 
multiple measurement on each sample point and increasing sample size can 
adequately compensate for the measurement errors effect. 
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1 Introduction 

Control charts are one of the most efficient tools in statistical process monitoring (SPM) 
which are used for online assessment of manufacturing or service processes. The main 
objective of control charts is to detect any change in the process parameters. Various 
control charts available in the literature have been constructed by assuming that the 
inspected samples are accurate. However, in most quality monitoring applications, a 
difference between the actual and observed quantity may be present due to measuring 
instruments errors. Theses measurement errors may affect the performance of different 
control charts. Hence, the measurement errors must be considered in constructing control 
charts for online monitoring of process parameters. The effect of measurement errors on 
the performance of various monitoring schemes is investigated by some researchers. In 
one of the earliest works on this problem, Bennet (1954) explored the effect of 
measurement errors on X  control chart. Bennet (1954) used the model Y = X + ε where X 
and Y are the true and the observed values of quality characteristic under investigation, 
respectively while ε is the random error due to the measurement error. Then, Kanazuka 
(1986) extended Bennet’s (1954) work by studying effect of measurement error on /X R  
control chart. The effect of measurement errors on various control charts is also 
addressed by Linna et al. (2001) (on 2χ  chart), Yang and Yang (2005) (on Shewhart and 
cause-selecting charts), Yang et al. (2007) [on exponentially weighted moving average 
(EWMA) and cause-selecting charts], Maravelakis (2007) (on cumulative sum chart), 
Moameni et al. (2012) (on X R−  fuzzy charts), Khurshid and Chakraborty (2014) (on 
zero-truncated binomial distribution-based chart), Abbasi (2014) (on Shewhart, EWMA 
and cumulative sum charts) and Noorossana and Zerehsaz (2015) (on charts for 
monitoring simple linear profiles). For more information about the effect of gauge 
measurement errors on the performance of different control charts, please refer review 
paper provided by Maleki et al. (2016). Recently, some remedial approaches have been 
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introduced to compensate for the effect of measurement errors on the performance of 
control charts in some researches such as Maravelakis et al. (2004), Cocchi and 
Scagliarini (2007), Abbasi (2010), Costa and Castagliola (2011), Maravelakis (2012), Hu 
et al. (2015), Riaz (2014), Haq et al. (2015), Hu et al. (2015), and Abbasi (2016). 

In recent years, simultaneous monitoring of process mean and variability by a single 
statistic has been taken into account by the researchers. In simultaneous monitoring, the 
main idea is to use a single statistic to monitor the process mean and variability, jointly. 
Some of the recent works in the simultaneous monitoring area includes Tasias and Nenes 
(2012), Sheu et al. (2013), Chowdhury et al. (2015) and Maleki and Amiri (2015). 

All of the above-mentioned researches in measurement error area have been focused 
on exploring the effect of measurement errors on monitoring the process mean or the 
process variability, separately. However, the effect of measurement errors on 
simultaneous monitoring of process mean and variability is neglected in the literature. In 
this paper the effect of measurement errors on the performance of MAX-EWMAMS 
control chart to detect simultaneous changes in the parameters of the process mean and 
variability is explored. Moreover, we show that the effect of measurement errors on the 
performance of this chart to diagnose the source of signal (mean, variability or both) is 
negligible. We also utilise the multiple measurements on each sample point to decrease 
the effect of measurement errors on both detecting and diagnosing performance of  
MAX-EWMAMS control chart. 

The rest of this paper is organised as follows: in Section 2, we discuss  
MAX-EWMAMS control chart. In Section 3, modification of MAX-EWMAMS control 
chart in the presence of measurement error is proposed. In Section 4, the multiple 
measurement approach is developed to compensate the effect of measurement error on 
the performance of MAX-EWMAMS control chart. In Section 5, simulation studies are 
given to investigate the effect of measurement errors on detecting and diagnosing 
performance of MAX-EWMAMS control chart and to show the efficiency of the multiple 
measurement approach. In Section 6, the conclusions and a recommendation for future 
study are given. 

2 MAX-EWMAMS control chart 

Let Xt = [Xt1, …, Xtn]T denote the observations of quality characteristic under 
investigation at tth; t = 1, 2, … sample point. We assume that when the process is  
in-control, Xtj; j = 1, …, n follows a normal distribution with parameters μ0 and 2

0 .σ . The 
EWMA statistic for monitoring the process mean is: 

1(1 ) ,t t tZ λX λ Z −= + −  (1) 

where 1 ,

n

tj
j

t

X

X
n

==
∑

 λ is the smoothing parameter which can be selected in the range of 

[0, 1] and Z0 = μ0. At tth sample point, the EWMS statistic which is first proposed by 
MacGregor and Harris (1993) for monitoring the process variability will be: 
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( )2
02 2

1
1

(1 ) ,
n

tj
t t

j

X μ
S λ S λ

n−
=

−
= − + ∑  (2) 

where 2 2
0 0 .S σ=  It can be statistically checked that: 

2 2
0 ,tE S σ=⎡ ⎤⎣ ⎦  (3) 

2 2 2
01 (1 ) .

(2 )
t

t
λVar S λ σ

n λ
= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦−

 (4) 

In order to have a single statistic for simultaneous monitoring of the process mean and 
variability, the EWMA and EWMS statistics are transformed to the standardised normal 
distribution. It can be statistically checked that the distribution of Zt in equation (1) is: 

2 2
0 0, 1 (1 ) .

(2 )
tλN μ λ σ

n λ
⎛

− −⎡ ⎤⎜ ⎣ ⎦−⎝
 (5) 

Obviously, the standardised statistic for monitoring the process mean is: 

( )0

2 2
0

.
1 (1 )

(2 )

t
t

t

Z μ
U

λ λ σ
n λ

−
=

− −⎡ ⎤⎣ ⎦−

 (6) 

It can be shown that in situations where the observations are independent and normally 
distributed, for each value of sample size n, when t → ∞, 2 2

0tS σ  approximately follows 
a chi-square distribution with the degree of freedom equal to df = n(2 – λ) / λ. Therefore, 
the following transformation is utilised to have a control statistic for monitoring the 
process variability with approximately standardised normal distribution. 

2
1 2

2
0

,t
t df

df SV χ
σ

−
⎡ ⎤⎛ ⎞×= ≤⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

φ  (7) 

Finally, the MAX-EWMAMS statistic at sample point t; t = 1, 2, … is defined as follows: 

{ }max , .t t tM U V=  (8) 

Since Mt ≥ 0, the MAX-EWMAMS control chart only has upper control limit (UCL). As 
a consequence, the MAX-EWMAMS control chart triggers an out-of-control signal if  
Mt > UCL, where UCL is set to have a pre-specified in-control average run length (ARL0). 

3 Modification of MAX-EWMAMS control chart in the presence of 
measurement error 

In the presence of measurement error, the true value of quality characteristic X is not 
directly observable, but can only be assessed by the results of the measured quantities. In 
this paper, the additive covariate model is used to describe the relationship between true 
and measured quantities as follows: 
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,Y A BX ε= + +  (9) 

where A and B are the known constants while ε is the error term which is independent 
from X and follows a normal distribution with mean zero and constant variance of 2.εσ  
Therefore we have ( )2 2 2

0 0~ , .εY N A Bμ B σ σ+ + . The EWMA statistic for monitoring the 
process mean is: 

1(1 ) ,t t tZ λY λ Z −= + −  (10) 

where Z0 = A + Bμ0 and 1 .

n

tj
j

t

Y

Y
n

==
∑

 For monitoring the process variability in the 

presence of measurement error, the EWMS statistic is rewritten as: 

( )( )2
02 2

1
1

(1 ) ,
n

tj
t t

j

Y A Bμ
S λ S λ

n−
=

− +
′ ′= − + ∑  (11) 

where 2 2 2 2
0 0 .εS B σ σ= +  It would be statistically checked that: 

( )2 2 2 2
0 0~ , 1 (1 )

(2 )
t

t ε
λZ N A Bμ λ B σ σ

n λ
⎛ ⎞⎛ ⎞

+ − − × +⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦−⎝ ⎠⎝ ⎠
 (12) 

Hence, in the presence of measurement error, the standardised EWMA-based statistic for 
monitoring the process mean is defined as: 

( )0

2 2 2
021 (1 )

(2 )

t
t

εt

Z A Bμ
U

B σ σλ λ
λ n

− +
′ =

+− − ×⎡ ⎤⎣ ⎦−

 (13) 

In order to obtain the standardised statistic for monitoring the process variability, 
equation (7) is rewritten as follows: 

2
1 2

2
Pr .t

t df
y

df SV χ
σ

−
⎡ ⎤⎛ ⎞′×′ = ≤⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

φ  (14) 

Finally, the chart statistic considering the measurement error is obtained as follows: 

{ }max ,t t tM U V′ ′ ′=  (15) 

The chart triggers an out-of-control signal if ,tM UCL′ >  where UCL is set to have a  
pre-specified ARL0. 

As long as ,tM UCL′ >  the following post-signal diagnostic rules are implemented to 
identify the source of the signal (mean or variability): 

1 if | |tU UCL′ >  and ,tV UCL′  the deviation in the process mean is considered as the 
source of the signal 
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2 if tV UCL′  and | | ,tU UCL′ >  the deviation in the process variability is considered as 
the source of the signal 

3 if | |tU UCL′ >  and ,tV UCL′  the deviation in both process mean and variability is 
considered as the source of the signal. 

Assume that a given simultaneous shift (μX = μ0 + δσ0, σX = ψσ0) leads to an  
out-of-control signal at tth sample. In such situation, the deviation in both mean and 
variance of the process must be considered as the source of signal. However, the 
performance of MAX-EWMAMS control chart in diagnosing the source of signal under 
simultaneous shifts is not satisfactory. Because the probability that both | |tU ′  or tV ′  

statistics jointly exceed the UCL ( )( ), ,t t X XP U UCL V UCL μ σ′ ′> >  is less than the 

probability that only one of them exceeds the UCL 

( ) ( )( ), , , | | | , .t X X t t X XtP U UCL V UCL μ σ P V UCL U UCL μ σ′ ′ ′ ′> ≤ + > ≤  

4 Multiple measurement approach 

Linna and Woodall (2001) suggested that taking several in each sampled unit can 
decrease the effect of measurement error. In this section, we utilise this approach to 
compensate the measurement error effect on the performance of MAX-EWMAMS 
control chart. To incorporate the multiple measurement approach in our model, we define 
matrix for tth sample point as follows: 

11 21 1

12 22 2

1 2

,

t t tn

t t tn
t

t k t k tnk

Y Y Y
Y Y Y

Y Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y  (16) 

where Ytji; t = 1, 2, … j = 1, 2, …, n i = 1, 2, …, k is the jth observation of the measured 
quality characteristic at tth sample point which is obtained by ith measurement. For the 
average value of jth observation at tth sample point we have 

2
1 2 2

0 0~ , .

k

tji
εi

tj

Y
σY N A Bμ B σ

k k
= ⎛ ⎞= + +⎜ ⎟

⎝ ⎠

∑
 

The modified EWMA control statistic for monitoring the process mean is defined as: 

1(1 ) ,t t tZ λY λ Z −′′ ′′= + −  (17) 

where 0 0Z A Bμ′′ = +  and 1

n

tj
k

t

Y
Y

n
==
∑

 is the overall mean at tth sample point with the 

following distribution: 
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2 2 2
0

0~ , ε
t

B σ σY N A Bμ
n nk

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
 (18) 

The control statistic for monitoring the process variability will be: 

( )( )2
02 2

1
1

(1 ) ,
n

tj
t t

j

Y A Bμ
S λ S λ

n−
=

− +
′′ ′′= − + ∑  (19) 

where 
2

2 2 2
0 0 .εσS B σ

k
= +  Since ( )

2 2 2
02

0~ , 1 (1 ) ,
(2 )

εt
t

B σλ σZ N A Bμ λ
λ n nk

⎛ ⎞⎛ ⎞′′ + − − +⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
 the 

standardised control statistic for monitoring is defined as: 

[ ]0

2 2 2
02

( )
.

1 (1 )
(2 )

t
t

εt

Z A Bμ
U

B σλ σλ
λ n nk

′′− +
′′ =

⎛ ⎞− − × +⎡ ⎤ ⎜ ⎟⎣ ⎦− ⎝ ⎠

 (20) 

Utilising multiple measurement approach, leads to the following standardised statistic for 
monitoring the process variability: 

2
1 2

2
Pr ,t

t df
Y

df SV χ
σ

−
⎡ ⎤⎛ ⎞′′×′′= ≤⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

φ  (21) 

where 
2

2 2 2
0 .ε

Y
σσ B σ
k

= + . Finally, the joint monitoring statistic in the presence of 

measurement error and utilising multiple measurement approach is obtained as: 

{ }max ,t t tM U V′′ ′′ ′′=  (22) 

The chart triggers an out-of-control signal if ,tM UCL′ >  where UCL is set to have a  
pre-specified ARL0. 

5 Performance evaluation 

The run length is defined as the number of consecutive samples which is taken and 
plotted until the first statistic falls outside the control limits interval. The ARL is the most 
common criterion to evaluate the detecting performance of different monitoring schemes 
in the SPM literature. In this study, the ARL along with the standard deviation of run 
lengths (SDRL) under different out-of-control step changes is used to evaluate the 
detecting performance of the proposed monitoring schemes. In order to provide the ARLs 
and SDRLs under out-of-control scenarios, the value of UCL for each scenario is set by 
simulation experiments such that the in-control ARL (ARL0) becomes approximately 
equals to 200. Then, the out-of-control ARLs and SDRLs are obtained based on 20,000 
simulation replicates in MATLAB software. In the out-of-control scenarios, the step 
mean and variance changes are denoted by μ = μ0 + δσ0 and σ = ψσ0, respectively. Here 
we assume that when the process is in-control, X follows a standard normal distribution. 
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Without loss of generality, we also assume the parameters of the additive covariate model 
to be as A = 0 and B = 1. Table 1 represents the ARLs and SDRLs for different value of 

2
εσ  when n = 5 and λ = 0.1. The results of Table 1 confirm the adverse effect of 

measurement errors on detecting performance of MAX-EWMAMS control chart under 
all mean shifts, variance shifts and simultaneous shifts. We can see that, as the variance 
of measurement error increases, the ARLs and SDRLs tend to be increased. Moreover, 
the effect of measurement errors on detecting performance of MAX-EWMAMS control 
chart lessens as the magnitude of step shift increases. The diagnosing performance of the 
MAX-EWMAMS control chart in terms of correct diagnosis percentage (CDP) when  
n = 5 and λ = 0.1 is summarised in Table 2. Table 2 reveals that the effect of 
measurement error on diagnosing performance of MAX-EWMAMS is negligible. 

Table 1 ARLs and SDRLs for different values of 2
εσ  when n = 5, λ = 0.1, k = 1 

UCL 2.7247 2.7247 2.7247 2.7247 2.7247 

  2
εσ  

(δ, ψ) 
No error 0.25 0.5 0.75 1 

(0, 0) ARL 199.6433 203.2319 199.7815 203.0724 204.4138 
SDRL 201.4097 196.4947 198.4662 200.9392 202.4140 

(0.25, 1) ARL 20.8978 25.0083 29.7384 33.1850 37.4397 
SDRL 16.1371 19.7284 24.2172 27.8107 32.0677 

(0.5, 1) ARL 6.3182 7.5904 8.9602 10.1408 11.3432 
SDRL 3.8958 4.8949 5.9357 6.8166 7.9706 

(0.75, 1) ARL 3.3099 3.9129 4.5643 5.1586 5.7625 
SDRL 1.8838 2.2631 2.7112 3.1469 3.5377 

(0, 0.5) ARL 6.5273 8.9189 11.8481 15.2974 19.5017 
SDRL 0.7946 1.9792 3.7710 6.1885 9.4458 

(0, 1.1) ARL 45.4458 59.5822 73.3957 85.6144 97.4451 
SDRL 40.8953 54.8862 68.3600 82.4126 94.1649 

(0, 1.25) ARL 12.3347 12.9500 21.0773 25.8005 30.9053 
SDRL 8.8364 10.5108 16.9313 21.1270 26.7778 

(0.25, 0.5) ARL 7.2975 9.8088 12.6269 16.6616 19.0256 
SDRL 1.0959 2.4332 4.2328 6.5428 9.3370 

(0.25, 1.1) ARL 16.4323 20.1841 23.9096 27.4807 30.9309 
SDRL 12.7467 16.1232 19.5265 23.1843 26.3321 

(0.25, 1.25) ARL 9.3211 11.7683 14.3351 17.2021 19.7014 
SDRL 6.5808 8.6129 10.9543 13.3625 15.8247 

(0.5, 0.5) ARL 6.3258 7.6130 8.7692 10.0639 11.2585 
SDRL 1.7705 2.6833 3.6136 4.6480 5.6481 

(0.5, 1.1) ARL 6.1194 7.3289 8.5693 9.6873 10.7659 
SDRL 4.0991 4.9756 5.9145 6.9189 7.5642 

(0.5, 1.25) ARL 5.2568 6.3487 7.4277 8.5005 9.5704 
SDRL 3.4933 4.3032 5.1212 6.0615 6.7699 
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Table 2 CDP for different values of 2
εσ  when n = 5, λ = 0.1, k = 1 

(δ, ψ) 
 2

εσ  

Signal factor 
No error 0.25 0.5 0.75 1 

(0.25, 1) Correct diagnosis percent 95.28 94.47 93.25 92.57 91.95 
(0.5, 1) Correct diagnosis percent 98.02 97.63 97.39 97.34 97.17 
(0.75, 1) Correct diagnosis percent 97.70 97.73 97.77 98.15 97.93 
(0, 0.5) Correct diagnosis percent 100 99.99 99.90 99.73 99.21 
(0, 1.1) Correct diagnosis percent 76.35 71.38 68.36 66.09 63.90 
(0,1.25) Correct diagnosis percent 83.97 83.27 82.25 80.67 79.47 

Table 3 ARLs and SDRLs under multiple measurement approach when n = 5, λ = 0.1 and 
2 1εσ =  for different value of k 

UCL 2.7247 2.7247 2.7247 2.7247 2.7247 
 k 
(δ, ψ) 

No error 1 2 5 10 

(0, 0) ARL 199.6433 204.4138 201.4260 205.8066 199.8006 
SDRL 201.4097 202.4140 199.8302 203.4022 198.1943 

(0.25, 1) ARL 20.8978 37.4397 29.6591 24.2778 22.6044 
SDRL 16.1371 32.0677 24.0479 19.2255 18.0760 

(0.5, 1) ARL 6.3182 11.3432 8.8433 7.3825 6.8818 
SDRL 3.8958 7.9706 5.8654 4.7533 4.4171 

(0.75, 1) ARL 3.3099 5.7625 5.5939 3.8343 3.5359 
SDRL 1.8838 3.5377 2.7075 2.1830 1.9936 

(0, 0.5) ARL 6.5273 19.5017 11.8555 8.3906 7.4353 
SDRL 0.7946 9.4458 3.7796 1.6657 1.1990 

(0, 1.1) ARL 45.4458 97.4451 74.6865 58.3012 51.2615 
SDRL 40.8953 94.1649 71.1094 54.7418 47.8262 

(0, 1.25) ARL 12.3347 30.9053 21.2676 15.4656 13.8284 
SDRL 8.8364 26.7778 17.2412 11.5136 10.2706 

(0.25, 0.5) ARL 7.2975 19.0256 12.6265 9.2878 8.2518 
SDRL 1.0959 9.3370 4.2455 2.0990 1.5404 

(0.25, 1.1) ARL 16.4323 30.9309 23.5854 19.3987 17.8377 
SDRL 12.7467 26.3321 20.0680 15.5673 14.9271 

(0.25, 1.25) ARL 9.3211 19.7014 14.4089 11.2748 10.1468 
SDRL 6.5808 15.8247 10.9809 8.3025 7.3394 

(0.5, 0.5) ARL 6.3258 11.2585 8.7888 7.3403 6.773 
SDRL 1.7705 5.6481 3.6594 2.5192 2.1448 

(0.5, 1.1) ARL 6.1194 10.7659 8.6203 7.0384 6.5964 
SDRL 4.0991 7.5642 5.9721 4.6974 4.4121 

(0.5, 1.25) ARL 5.2568 9.5704 7.4262 6.1359 5.6742 
SDRL 3.4933 6.7699 5.1000 4.1414 3.8481 
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Table 4 CDP under multiple measurement approach when n = 5, λ = 0.1 and 2 1εσ =  for 
different value of k 

(δ, ψ) 
 k 
Signal factor 

No 
error 1 2 5 10 

(0.25, 1) Correct diagnosis percent 95.28 91.95 93.32 94.55 95.08 
(0.5, 1) Correct diagnosis percent 98.02 97.17 97.54 97.63 97.68 
(0.75, 1) Correct diagnosis percent 97.70 97.93 97.95 97.71 97.56 
(0, 0.5) Correct diagnosis percent 100 99.21 99.84 99.99 100 
(0, 1.1) Correct diagnosis percent 76.35 63.90 69.50 74.03 74.82 
(0, 1.25) Correct diagnosis percent 83.97 79.47 82.90 82.97 83.64 

Table 5 Effect of measurement error and multiple measurement approach 

Area 
Effect 

Detecting 

Mean shift  Variance shift 
Measurement error (n = 5) 2 0.5εσ =  2 1εσ =   2 0.5εσ =  2 1εσ =  

28.9 101.6  295.3 1072.4 
Multiple measurements 

2( 1)εσ =  
k = 2 k = 5  k = 2 k = 5 
22.3 64.2  223.1 631.4 

Area 
Effect 

Diagnosing 

Mean shift  Variance shift 

Measurement error (n = 5) 
2 0.5εσ =  2 1εσ =   2 0.5εσ =  2 1εσ =  

1.5 3.9  22.3 58.6 
Multiple measurements 

2( 1)εσ =  
k = 2 k = 5  k = 2 k = 5 
0.7 2.3  14.5 38.5 

Table 3 contains the values of ARL and SDRL obtained by utilising multiple 
measurement approach for different values of parameter k when n = 5, λ 0.1 and 2 1.εσ =  
One can observe that, we can compensate the effect of measurement errors by taking 
multiple measurements on each observation. It is also concluded that as the parameter k 
increases, both ARL and SDRL values decrease. The effect of taking multiple 
measurements on diagnosing performance of MAX-EWMAMS control chart is displayed 
in Table 4. Table 4 shows that the effect of multiple measurement approach on 
diagnosing performance of MAX-EWMAMS control chart is not considerable. For 
example in step shift with magnitude of (δ, ψ) = (0.5, 1), taking 2, 5 and 10 
measurements on each sample point increases the correct diagnosis of MAX-EWMAMS 
chart only about 0.37%, 0.46% and 0.51%, respectively. 

The results of Tables 1–4 in terms of ESS
N

 criterion are also summarised in Table 5 

where N is the number of step shifts considered (three for mean and three for variance 
shifts). The results show that for both mean and variance shifts, as the value of 2

εσ  
increases, the difference between the values of ARL and corrected diagnosis percentage 
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from their similar ones in error-free case increase. The results also show that for both 
mean and variance shifts, by increasing the value of parameter k, the difference between 
the values of ARL and corrected diagnosis percentage from their similar ones in the case 
of k = 1 increases. 

Here, the effect of parameter n on detecting and diagnosing performance of  
MAX-EWMAMS chart when 2 0.5,εσ =  λ = 0.1 and k = 1 are investigated and the results 
are summarised in Tables 6 and 7. The results of Table 6 confirm that the detecting 
performance of MAX-EWMAMS chart under measurement errors is seriously affected 
by the value of parameter n. As the value of parameter n increases, the ARLs and SDRLs 
tend to decrease. As seen in Table 7, the diagnosing performance of MAX-EWMAMS 
chart improves as the value of parameter n increases. 

Table 6 ARLs and SDRLs for different values of n when 2 0.5,εσ =  λ = 0.1, k = 1 

UCL 2.7216 2.7247 2.7299 2.7357 2.7396 
  n 

(δ, ψ) 
3 5 10 12 15 

(0, 0) ARL 198.1780 199.7815 197.5956 199.9626 203.9558 
SDRL 195.7899 198.4662 192.9538 195.5071 205.5351 

(0.25, 1) ARL 44.0630 29.7384 16.3242 13.8250 11.3942 
SDRL 38.9207 24.2172 11.8610 10.0362 7.6817 

(0.5, 1) ARL 13.4841 8.9602 4.9901 4.3037 3.6950 
SDRL 9.5761 5.9357 2.9966 2.4993 2.0925 

(0.75, 1) ARL 6.7873 4.5643 2.6247 2.3454 2.0033 
SDRL 4.3547 2.7112 1.4153 1.1891 0.9952 

(0, 0.5) ARL 17.4653 11.8481 7.4629 6.7275 5.9104 
SDRL 6.9807 3.7710 1.7123 1.4776 1.1872 

(0, 1.1) ARL 90.7900 73.3957 50.7420 45.8784 40.4083 
SDRL 88.5107 68.3600 45.7138 40.9917 35.3443 

(0, 1.25) ARL 28.9788 21.0773 13.0120 11.5510 10.0312 
SDRL 25.2987 16.9313 8.9257 7.5449 5.9967 

(0.25, 0.5) ARL 19.0308 12.6269 7.7314 6.9633 6.0567 
SDRL 7.7759 4.2328 1.9809 1.7141 1.4539 

(0.25, 1.1) ARL 34.7180 23.9096 13.9808 13.0660 10.4665 
SDRL 31.7368 19.5265 10.4423 9.3629 7.2980 

(0.25, 1.25) ARL 20.1308 14.3351 8.8991 7.9979 6.6808 
SDRL 16.7697 10.9543 5.8205 5.0373 4.1192 

(0.5, 0.5) ARL 13.8956 8.7692 4.9089 4.2280 3.6076 
SDRL 6.1113 3.6136 2.0199 1.6951 1.4404 

(0.5, 1.1) ARL 12.6875 8.5693 4.9286 4.3576 3.6779 
SDRL 9.0614 5.9145 3.0995 2.6394 2.1681 

(0.5, 1.25) ARL 10.7520 7.4277 4.5655 3.9881 3.4040 
SDRL 8.1630 5.1212 2.8383 2.4397 1.9769 
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Table 7 CDP for different values of n when 2 0.5,εσ =  λ = 0.1, k = 1 

(δ, ψ) 
 n 
Signal factor 

3 5 10 12 15 

(0.25, 1) Correct diagnosis percent 89.75 93.25 96.66 97.42 98.13 
(0.5, 1) Correct diagnosis percent 95.00 97.39 99.00 99.18 99.43 
(0.75, 1) Correct diagnosis percent 95.73 97.77 98.96 99.30 99.64 
(0, 0.5) Correct diagnosis percent 99.76 99.90 99.98 99.92 99.97 
(0, 1.1) Correct diagnosis percent 61.34 68.36 78.16 80.57 82.64 
(0, 1.25) Correct diagnosis percent 76.09 82.25 87.50 88.83 90.05 

6 Conclusions and future study 

In this paper, we investigated the effect of measurement error on detecting and 
diagnosing performance of MAX-EWMAMS control chart in Phase II. Taking multiple 
measurements on each sample point as a remedial approach was utilised to compensate 
for the errors effect. The results of simulation study revealed that the measurement errors 
affect the performance of MAX-EWMAMS control chart in detecting different step 
changes. However, using the multiple measurement approach decrease the adverse effect 
of measurement errors on simultaneous monitoring of process mean and variability. The 
result also showed that the effect of measurement errors on diagnosing performance of 
MAX-EWMAMS chart is negligible. As a future study, it is recommended to investigate 
the effect of gauge measurement errors on the performance of adaptive control charts. 
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