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On the Effect of Measurement Error with
Linearly Increasing-Type Variance on
Simultaneous Monitoring of Process
Mean and Variability
Adel Khati Dizabadi,a Mahmoud Shahrokhia

and Mohammad Reza Malekib*†
In most quality control applications, the errors generated from measurement system can adversely affect the ability of
control charts in detecting out-of-control conditions. In this paper, the effect of measurement error with linearly
increasing-type variance on the performance of maximum exponentially weighted moving average and mean-squared
deviation (MAX-EWMAMS) control chart is studied. For this purpose, different out-of-control scenarios including mean shifts,
variance shifts, and simultaneous shifts in both are considered, and the detecting performance of the proposed approach is
investigated through simulation study. The results of simulation study in terms of three criteria including average run length,
standard deviation of run lengths, and the empirical distribution of run lengths prove that the measurement error with
linearly increasing-type variance can adversely affect the performance of MAX-EWMAMS control. Copyright © 2015 John
Wiley & Sons, Ltd.
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1. Introduction

T
he errors in the measurement system are the differences between the actual and the observed values that are known as
measurement errors. The measurement errors can be originated from environmental factors (such as temperature, light, and
humidity), measuring instruments and operators. Due to the errors of measurement system in most production environments,

we are not able to observe the quality characteristics we are interested to monitor. The measurement errors considerably affect the
ability of control charts in detecting out-of-control conditions. Consequently, neglecting the effect of measurement error can cause
misleading interpretation of control chart signals. The effect of measurement error on the performance of different control charts
is well documented in the literature.

In one of the first works in measurement error, Bennett1 studied the effect of measurement error on monitoring the process mean.
He considered the model Y= X+ ε, where X is the actual value of the quality characteristic while Y is its observed value. He assumed
that both quality characteristics X and Y are normally distributed. He pointed out that in situations where the variance of
measurement error is smaller than the variance of the process, it can be overlooked. Then, some other researchers such as Abraham2

studied the effect of measurement error on the performance of control schemes using the same model in Bennett1. Kanazuka3 also
using the same model by Bennett1 investigated the effect of measurement error on the performance of joint X=R control chart. He
found that the measurement error decreases the power of control chart in detecting out-of-control conditions. He concluded that
using larger sample sizes leads to increasing to the power of the control chart. Mittag4 considered the same model by Bennett1

and examined the effect of measurement error on the performance of Shewhart-type X=S control chart.

Mittag and Stemann5 studied the effect of measurement error on the performance of joint X=S control chart. They proved that the
measurement error can adversely affect the performance of the control chart in detecting out-of-control disturbances. Linna and
Woodall6 investigated the effect of measurement error on the performance of X and S control charts using a linear covariate model
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Y=A+ BX+ ε. They proved that the variance of the measurement error and the value of parameter B affect the ability of both
control charts in detecting a given change in the mean and variance of the process. Linna et al.7 extended the linear covariate model
Y=A+ BX+ ε to a multivariate case. He showed that the measurement error can considerably deteriorate the detection capability of a
multivariate control chart. Stemann and Weihs8 examined the effect of measurement error on the performance of exponential
weighted moving average (EWMA)-based control charts for monitoring both process mean and process variance.

Maravelakis et al.9 investigated the effect of measurement error on the ability of the EWMA control chart in detecting out-of-
control conditions in the case of mean shifts. They also examined multiple measurements on each sampled unit to decrease
undesirable effect of measurement error. Huwang and Hung10 studied the effect of measurement error on the performance of two
control chart schemes for monitoring process variability in the case of multivariate quality characteristics. Abbasi11 investigated the
performance of the EWMA control chart in the presence of two-component measurement error. He concluded that multiple
measurements at each sample point can reduce the effect of measurement error. Costa and Castagliola12 studied the performance
of X control chart in the presence of both measurement error and autocorrelation. Scagliarini13 examined the effect of measurement
error on multivariate process capability where the capability indices are computed based on the principal components analysis.
Chakraborty and Khurshid14 studied the effect of measurement error on the power of control chart in situations with zero-truncated
Poisson distribution. They pointed out that increasing the sample size can decrease the effect of measurement error on detecting
performance of the control chart.

Haq et al.15 studied the effect of measurement error on the performance of EWMA control chart for monitoring process mean
based on ranked set sampling (RSS), median RSS (MRSS), imperfect RSS, and imperfect MRSS schemes. They suggested the multiple
measurements and non-constant error variance in order to cover undesirable effect of measurement error. Considering the literature,
we found that in most researches, the variance of measurement error is assumed to be constant. On the other hand, to the best of our
knowledge, there is no research available in the literature that incorporates the measurement error in simultaneous monitoring of
process mean and variability. In order to fill this gap, in this paper, we explore the effect of measurement error with linearly
increasing-type variance on detection capability of maximum exponentially weighted moving average and mean-squared deviation
(MAX-EWMAMS) control chart in detecting mean shifts, variance shifts, and simultaneous shifts in both process mean and variance.
Three criteria based on run length values including average run length (ARL), standard deviation of run lengths (SDRLs), and the
empirical distribution of run lengths are used in order to assess the MAX-EWMAMS control chart in the presence of measurement
error. The run length criterion is defined as the number of consecutive samples taken until the first sample statistic falls outside
the control limits interval. In in-control and out-of-control situations, the expected value of run lengths is called in-control ARL
(ARL0) and out-of-control ARL (ARL1), respectively.

The rest of this paper is organized as follows. In Section 2, we explain a simultaneous monitoring approach called MAX-EWMAMS
control chart. In Section 3, we incorporate the measurement error with linearly increasing-type variance into MAX-EWMAMS control
chart. In Section 4, we provide a numerical example based on simulation and investigate the effect of measurement error on MAX-
EWMAMS control chart. Finally, in Section 5, we conclude the main findings and present a future study.
2. Maximum exponentially weighted moving average and mean-squared deviation
control chart

The EWMA-type control charts take into account both the current and previous samples of the process. Hence, they are more sensitive
to small shifts rather than Shewhart-type control charts. In this section, we describe a simultaneous monitoring control scheme called
MAX-EWMAMS control chart proposed by Memar and Niaki16 based on two control charts including EWMA and exponential weighted
mean square error (EWMS) control charts.

2.1. Exponential weighted moving average control chart

Supposed that when the process is in-control, the true value of quality characteristic X under investigation follows a normal distribution

with parameters μ0 and σ20. Let Xt be the sample mean that is taken at time t; t= 1, 2,… based on random samples of size n. The EWMA
control statistic for monitoring the process mean corresponding to sample t, t= 1, 2,… is defined according to Equation (1):

Zt ¼ λXt þ 1� λð ÞZt�1; (1)

where λ; 0< λ ≤ 1 is the smoothing parameter and Z0 =μ0.

2.2. Exponential weighted mean square error control chart

The EWMS control chart statistic for monitoring the process variability that is first proposed by MacGregor and Harris17 plots against
the sample sequence t; t= 1, 2,… as follows:

S2t ¼ 1� λð ÞS2t�1 þ λ∑
n

k¼1

Xtk � μ0ð Þ2
n

; (2)

where Xtk is the kth observation in the tth sample and S20 ¼ σ20. It can be statistically checked that
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E S2t
� � ¼ σ20; (3)

Var S2t
� � ¼ 2λ

n 2� λð Þ 1� 1� λð Þ2t
h i

σ40: (4)

It can be shown that in situations where the observations are independent and normally distributed, for each value of sample size
n, when t→∞, then we have the following:
Table I. Distribution of run lengths in detecting mean shifts for different values of D when C= 0

hm 3.0799 3.1137 3.2110 3.2451 3.2509

δ 0 1 2 3 5

0 ARL 367.0275 371.6275 373.5350 374.3840 367.0725
SDRL 354.1366 385.1625 490.4916 531.1813 543.8256
p(RL<ARL� 0.5 × SDRL) 38.91% 40.18% 43.36% 46.50% 47.48%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.70% 22.35% 21.33% 19.53% 18.22%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.72% 15.43% 13.53% 12.46% 12.09%
p(RL ≥ARL+0.5 × SDRL) 21.67% 22.04% 21.78% 21.51% 22.21%

0.25 ARL 163.2075 334.0785 338.6300 341.1155 358.8690
SDRL 162.1143 366.0217 458.6357 526.4423 542.5478
p(RL<ARL� 0.5 × SDRL) 38.72% 39.64% 44.26% 44.60% 46.14%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 25.19% 22.91% 20.96% 21.67% 19.57%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.29% 14.71% 13.01% 12.10% 13.22%
p(RL ≥ARL+0.5 × SDRL) 21.80% 22.74% 21.77% 21.63% 21.08%

0.5 ARL 49.9570 247.0270 287.6900 326.1140 331.7480
SDRL 45.5500 248.6189 383.1722 432.3062 465.8325
p(RL<ARL� 0.5 × SDRL) 39.23% 39.40% 42.56% 45.66% 46.38%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.95% 24.33% 23.43% 20.84% 20.79%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 13.73% 13.66% 13.83% 12.61% 11.56%
p(RL ≥ARL+0.5 × SDRL) 22.09% 22.61% 20.18% 20.89% 21.27%

1 ARL 11.1115 107.6130 166.6245 208.1495 249.5790
SDRL 8.0708 112.7888 213.4826 301.5726 366.2184
p(RL<ARL� 0.5 × SDRL) 39.14% 39.26% 43.62% 44.36% 46.17%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.97% 23.28% 21.63% 21.76% 20.78%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 13.78% 14.50% 13.45% 12.49% 12.91%
p(RL ≥ARL+0.5 × SDRL) 22.11% 22.96% 21.30% 21.39% 20.14%

1.5 ARL 4.9400 50.6605 94.3915 124.8615 162.0705
SDRL 2.8646 49.3697 116.5436 166.5957 252.6518
p(RL<ARL� 0.5 × SDRL) 34.05% 38.43% 41.93% 45.06% 44.92%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 30.31% 24.53% 23.10% 19.43% 21.10%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 9.09% 14.77% 14.13% 14.36% 13.14%
p(RL ≥ARL+0.5 × SDRL) 26.55% 22.27% 20.84% 21.15% 20.84%

2 ARL 3.0795 27.0255 49.5900 73.4730 110.3555
SDRL 1.5608 24.1124 64.9632 103.0322 169.8044
p(RL<ARL� 0.5 × SDRL) 41.30% 38.66% 42.96% 44.30% 45.75%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.46% 23.23% 21.33% 21.00% 20.87%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 0% 15.33% 13.07% 12.49% 12.88%
p(RL ≥ARL+0.5 × SDRL) 34.24% 22.78% 22.64% 22.21% 20.50%

2.5 ARL 2.1870 16.4085 32.0085 47.4725 79.0220
SDRL 1.0312 13.7585 34.6826 60.9977 106.1840
p(RL<ARL� 0.5 × SDRL) 28.61% 39.00% 41.32% 42.71% 44.36%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 40.87% 24.07% 22.06% 21.56% 21.74%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 0% 12.90% 14.42% 13.70% 12.32%
p(RL ≥ARL+0.5 × SDRL) 30.52% 24.03% 22.20% 22.03% 21.58%

3 ARL 1.6645 11.3660 21.2825 31.8325 54.1715
SDRL 0.7154 8.4861 23.0186 41.1190 74.1377
p(RL<ARL� 0.5 × SDRL) 47.57% 34.20% 39.66% 41.95% 43.96%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 0% 28.31% 22.73% 22.93% 20.92%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 40.80% 15.32% 15.26% 12.44% 13.45%
p(RL ≥ARL+0.5 × SDRL) 11.63% 22.17% 22.35% 22.68% 21.67%

ARL, average run length; SDRL, standard deviation of run length.
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S2t =σ
2
0→χ2ν ν ¼ n 2� λð Þ=λ:ð (5)

2.3. Maximum exponentially weighted moving average and mean-squared deviation control chart

In order to derive MAX-EWMAMS statistic, Memar and Niaki16 used EWMA and EWMS statistics for monitoring the process mean and
process variability, respectively. Then, they transformed the distribution of both statistics to a similar distribution (standard normal
Table II. Distribution of run lengths in detecting mean shifts for different values of C when D= 1

hm 3.0799 3.1137 3.1509 3.1686 3.1793

δ No error 0 1 2 3

0 ARL 367.0275 371.6275 371.5484 374.4776 371.7916
SDRL 354.1366 385.1625 435.5955 449.6847 462.4236
p(RL<ARL� 0.5 × SDRL) 38.91% 40.18% 40.65% 41.46% 41..89%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.70% 22.35% 22.76% 22.56% 22.37%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.72% 15.43% 14.29% 14.38% 12.90%
p(RL ≥ ARL+ 0.5 × SDRL) 21.67% 22.04% 22.30% 21.60% 22.84%

0.25 ARL 163.2075 334.0785 339.6170 346.3175 347.3855
SDRL 162.1143 366.0217 379.3418 389.8599 434.0846
p(RL<ARL� 0.5 × SDRL) 38.72% 39.64% 41.20% 40.50% 40.28%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 25.19% 22.91% 22.58% 23.56% 25.29%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.29% 14.71% 13.20% 15.28% 14.43%
p(RL ≥ ARL+ 0.5 × SDRL) 21.80% 22.74% 23.02% 20.66% 20.00%

0.5 ARL 49.9570 247.0270 258.9660 266.6970 266.9620
SDRL 45.5500 248.6189 294.8828 321.6827 340.1355
p(RL<ARL� 0.5 × SDRL) 39.23% 39.40% 40.53% 40.95% 40.57%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.95% 24.33% 22.98% 23.51% 23.89%
p(ARL ≤ RL< ARL+0.5 × SDRL) 13.73% 13.66% 13.96% 13.53% 13.91%
p(RL ≥ ARL+ 0.5 × SDRL) 22.09% 22.61% 22.53% 22.01% 21.63%

1 ARL 11.1115 107.6130 120.9345 124.0437 143.7665
SDRL 8.0708 112.7888 133.5202 157.7225 159.6814
p(RL<ARL� 0.5 × SDRL) 39.14% 39.26% 40.26% 41.35% 41.57%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.97% 23.28% 24.35% 22.26% 22.33%
p(ARL ≤ RL< ARL+0.5 × SDRL) 13.78% 14.50% 12.90% 14.54% 14.64%
p(RL ≥ ARL+ 0.5 × SDRL) 22.11% 22.96% 22.49% 21.85% 21.46%

1.5 ARL 4.9400 50.6605 57.4940 59.7770 64.7955
SDRL 2.8646 49.3697 57.7035 67.6889 72.0818
p(RL<ARL� 0.5 × SDRL) 34.05% 38.43% 39.28% 40.22% 41.59%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 30.31% 24.53% 23.69% 23.32% 21.96%
p(ARL ≤ RL< ARL+0.5 × SDRL) 9.09% 14.77% 15.20% 13.96% 14.44%
p(RL ≥ ARL+ 0.5 × SDRL) 26.55% 22.27% 21.83% 22.50% 22.01%

2 ARL 3.0795 27.0255 29.4990 33.1303 36.9290
SDRL 1.5608 24.1124 30.9345 32.4019 38.3711
p(RL<ARL� 0.5 × SDRL) 41.30% 38.66% 38.31% 38.77% 39.55%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.46% 23.23% 23.90% 23.60% 24.09%
p(ARL ≤ RL< ARL+0.5 × SDRL) 0% 15.33% 14.76% 15.61% 13.20%
p(RL ≥ ARL+ 0.5 × SDRL) 34.24% 22.78% 23.03% 22.02% 23.16%

2.5 ARL 2.1870 16.4085 18.5545 19.9887 22.1680
SDRL 1.0312 13.7585 16.0871 19.3639 21.3746
p(RL<ARL� 0.5 × SDRL) 28.61% 39.00% 35.57% 38.39% 38.51%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 40.87% 24.07% 27.96% 23.83% 24.03%
p(ARL ≤ RL< ARL+0.5 × SDRL) 0% 12.90% 14.09% 13.46% 14.00%
p(RL ≥ ARL+ 0.5 × SDRL) 30.52% 24.03% 22.38% 24.32% 23.46%

3 ARL 1.6645 11.3660 12.2885 13.2520 14.5440
SDRL 0.7154 8.4861 10.2163 11.3627 13.3611
p(RL<ARL� 0.5 × SDRL) 47.57% 34.20% 33.75% 37.82% 35.92%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 0% 28.31% 29.57% 25.53% 26.48%
p(ARL ≤ RL< ARL+0.5 × SDRL) 40.80% 15.32% 14.40% 14.73% 15.03%
p(RL ≥ ARL+ 0.5 × SDRL) 11.63% 22.17% 22.28% 21.92% 22.57%

ARL, average run length; SDRL, standard deviation of run length.
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distribution). After that, due to the same distribution of both transformed statistics, they used a single control chart for monitoring the
simultaneous process mean and process variability. It can be statistically checked that the distribution of Zt in Equation (1) is as follows:

N μ0;
λ

n 2� λð Þ 1� 1� λð Þ2tσ20
h i

:

�
(6)

Obviously, Ut that is used for monitoring the process mean follows the standard normal distribution as follows:

Ut ¼ Zt � μ0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

n 2�λð Þ 1� 1� λð Þ2tσ20
h ir : (7)
Table III. Distribution of run lengths in detecting variance shifts for different values of D when C=0

hm 3.0799 3.1137 3.2110 3.2451 3.2509

ψ 0 1 2 3 5

1 ARL 367.0275 371.6275 373.5350 374.3840 367.0725
SDRL 354.1366 385.1625 490.4916 531.1813 543.8256
p(RL<ARL� 0.5 × SDRL) 38.91% 40.18% 43.36% 46.50% 47.48%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.70% 22.35% 21.33% 19.53% 18.22%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.72% 15.43% 13.53% 12.46% 12.09%
p(RL ≥ARL+0.5 × SDRL) 21.67% 22.04% 21.78% 21.51% 22.21%

1.1 ARL 137.6755 315.0215 330.0015 351.3370 362.1805
SDRL 141.5861 350.6968 473.9762 511.2236 531.8964
p(RL<ARL� 0.5 × SDRL) 39.58% 37.65% 44.17% 45.60% 46.71%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 22.93% 26.30% 21.84% 21.17% 19.68%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.90% 14.32% 12.39% 11.69% 12.66%
p(RL ≥ARL+0.5 × SDRL) 22.59% 21.73% 21.60% 21.54% 20.95%

1.25 ARL 49.2310 258.0715 294.6655 339.7250 335.6975
SDRL 46.9689 277.8653 419.4686 461.1941 483.1959
p(RL<ARL� 0.5 × SDRL) 38.91% 40.13% 43.78% 45.52% 46.87%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.09% 24.48% 21.01% 20.91% 19.60%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.53% 13.22% 12.61% 12.52% 11.78%
p(RL ≥ARL+0.5 × SDRL) 22.47% 22.17% 22.60% 21.05% 21.75%

1.5 ARL 17.6835 178.8330 256.5505 277.3980 303.7830
SDRL 16.0772 191.7247 343.5926 398.5305 481.9449
p(RL<ARL� 0.5 × SDRL) 38.65% 38.26% 42.15% 44.30% 47.30%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 23.26% 24.65% 22.30% 20.75% 19.08%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 16.65% 15.00% 13.69% 13.95% 12.02%
p(RL ≥ARL+0.5 × SDRL) 21.44% 22.09% 21.86% 21.00% 21.60%

1.75 ARL 9.3385 130.3210 191.0090 253.3105 271.9225
SDRL 8.2469 130.5434 273.2633 345.2322 416.4403
p(RL<ARL� 0.5 × SDRL) 39.95% 38.30% 43.73% 45.56% 46.14%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 23.30% 25.26% 22.30% 20.31% 20.71%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.14% 14.82% 12.19% 11.86% 12.75%
p(RL ≥ARL+0.5 × SDRL) 22.61% 21.62% 21.78% 22.27% 20.40%

2 ARL 6.1245 92.4865 148.9000 214.1720 245.5625
SDRL 5.1539 96.7206 201.9542 280.2457 360.2203
p(RL<ARL� 0.5 × SDRL) 38.13% 38.73% 43.60% 44.69% 44.60%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 26.18% 25.63% 20.34% 21.58% 22.21%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 14.39% 13.73% 15.00% 12.44% 12.33%
p(RL ≥ARL+0.5 × SDRL) 21.30% 21.91% 21.06% 21.79% 20.86%

2.5 ARL 3.9010 47.8060 97.1500 146.4330 183.3755
SDRL 3.1047 49.0537 119.9116 177.3190 264.3480
p(RL<ARL� 0.5 × SDRL) 40.95% 39.26% 42.40% 44.97% 45.08%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 26.08% 24.58% 22.08% 20.04% 20.09%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 8.21% 14.82% 13.39% 13.34% 12.82%
p(RL ≥ARL+0.5 × SDRL) 24.76% 21.34% 22.13% 21.65% 22.01%

ARL, average run length; SDRL, standard deviation of run length.
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Memar and Niaki16 also used the following statistic with approximate standard normal distribution for monitoring the process
variability according to Equation (8):

Vt ¼ ϕ�1 H
νS2t
σ20

; ν
� �� 	

; (8)

where H{a; d} is defined as the cumulative distribution function of a chi-square distribution denoted byH a; df g ¼ pr χ2d≤a

 �

. The MAX-
EWMAMS statistic at sample point t; t=1, 2,… is defined as follows:

Mt ¼ max Ut ;j jVtj jf g: (9)

Because Mt ≥ 0, the MAX-EWMAMS control chart only has upper control limit.
Table IV. Distribution of run lengths in detecting variance shifts for different values of C when D= 1

ψ No error 0 1 2 3

1 ARL 367.0275 371.6275 371.5484 374.4776 371.7916
SDRL 354.1366 385.1625 435.5955 449.6847 462.4236
p(RL<ARL� 0.5 × SDRL) 38.91% 40.18% 40.65% 41.46% 41.89%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.70% 22.35% 22.76% 22.56% 22.37%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.72% 15.43% 14.29% 14.38% 12.90%
p(RL ≥ ARL+ 0.5 × SDRL) 21.67% 22.04% 22.30% 21.60% 22.84%

1.1 ARL 137.6755 315.0215 335.7790 342.9350 345.3760
SDRL 141.5861 350.6968 376.6129 397.5227 408.3486
p(RL<ARL� 0.5 × SDRL) 39.58% 37.65% 40.91% 40.82% 42.38%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 22.93% 26.30% 21.80% 23.40% 21.33%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.90% 14.32% 14.82% 14.34% 13.62%
p(RL ≥ ARL+ 0.5 × SDRL) 22.59% 21.73% 22.47% 21.44% 22.67%

1.25 ARL 49.2310 258.0715 273.9095 283.5640 288.0515
SDRL 46.9689 277.8653 311.8862 354.4435 364.4668
p(RL<ARL� 0.5 × SDRL) 38.91% 40.13% 40.47% 40.82% 40.33%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.09% 24.48% 22.95% 23.45% 23.95%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.53% 13.22% 13.92% 13.52% 14.30%
p(RL ≥ ARL+ 0.5 × SDRL) 22.47% 22.17% 22.66% 22.21% 21.42%

1.5 ARL 17.6835 178.8330 193.4594 205.5740 223.6100
SDRL 16.0772 191.7247 228.3256 244.5805 276.3315
p(RL<ARL� 0.5 × SDRL) 38.65% 38.26% 39.83% 40.34% 41.09%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 23.26% 24.65% 22.91% 24.13% 22.04%
p(ARL ≤ RL< ARL+0.5 × SDRL) 16.65% 15.00% 15.22% 14.58% 14.66%
p(RL ≥ ARL+ 0.5 × SDRL) 21.44% 22.09% 22.04% 20.95% 22.21%

1.75 ARL 9.3385 130.3210 141.0470 150.0370 162.3905
SDRL 8.2469 130.5434 158.2259 175.4404 183.7114
p(RL<ARL� 0.5 × SDRL) 39.95% 38.30% 40.00% 41.82% 41.71%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 23.30% 25.26% 23.95% 21.60% 22.45%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.14% 14.82% 14.31% 14.80% 13.23%
p(RL ≥ ARL+ 0.5 × SDRL) 22.61% 21.62% 21.74% 21.78% 22.61%

2 ARL 6.1245 92.4865 96.3040 104.7500 113.5995
SDRL 5.1539 96.7206 111.1757 128.8469 140.4171
p(RL<ARL� 0.5 × SDRL) 38.13% 38.73% 38.82% 40.47% 41.38%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.18% 25.63% 24.26% 22.79% 22.71%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.39% 13.73% 15.39% 14.01% 14.15%
p(RL ≥ ARL+ 0.5 × SDRL) 21.30% 21.91% 21.53% 22.73% 21.76%

2.5 ARL 3.9010 47.8060 51.7385 55.3060 64.1345
SDRL 3.1047 49.0537 55.9597 65.2728 75.6675
p(RL<ARL� 0.5 × SDRL) 40.95% 39.26% 39.56% 40.49% 40.95%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.08% 24.58% 24.19% 22.73% 23.52%
p(ARL ≤ RL< ARL+0.5 × SDRL) 8.21% 14.82% 14.17% 14.13% 14.57%
p(RL ≥ ARL+ 0.5 × SDRL) 24.76% 21.34% 22.08% 22.65% 20.96%

ARL, average run length; SDRL, standard deviation of run length.
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3. Incorporating measurement error with linearly increasing-type variance into
MAX-EWMAMS control chart

As noted, due to the measurement error, we are not able to observe the true value of quality characteristic X under investigation.
Instead of X, we can observe and monitor Y that is related to quality characteristic X according to the following equation:

Y ¼ Aþ BX þ ε; (10)

where A and B are intercept and slope constants and ε is the random error that is independent of X and follows a normal distribution
with mean zero. Recall that in most researches, the variance of the error term is considered as a constant value. However, in some
production systems, this assumption is violated. For example, in some practical environments, the variance of measurement error
depends on the mean level of the process (Montgomery and Runger18 and Linna and Woodall6). In this paper, we assume that the
variance of measurement error term changes linearly with quality characteristic under investigation, that is, C+Dμ0. Consequently,
Y follows a normal distribution as follows:

N Aþ Bμ0; B
2σ20 þ C þ Dμ0

� 
: (11)
Table V. Distribution of run lengths in detecting simultaneous shifts for different values of D when C=0 and δ= 0.5

hm 3.0799 3.1137 3.2110 3.2451 3.2509

ψ 0 1 2 3 5

1.1 ARL 36.1595 216.2660 274.0185 298.8975 318.4225
SDRL 32.7293 229.0723 351.1964 441.4029 467.8540
p(RL<ARL� 0.5 × SDRL) 39.54% 39.36% 44.44% 45.64% 46.75%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 22.36% 23.86% 19.65% 20.53% 19.06%
p(ARL ≤ RL< ARL+0.5 × SDRL) 15.23% 14.27% 12.36% 12.18% 11.75%
p(RL ≥ ARL+ 0.5 × SDRL) 22.87% 22.51% 23.55% 21.65% 22.44%

1.25 ARL 22.6325 184.6195 243.4985 284.7960 298.8835
SDRL 20.4230 203.2850 345.6469 419.8624 462.0676
p(RL<ARL� 0.5 × SDRL) 36.86% 39.31% 42.88% 44.75% 47.02%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.05% 24.04% 22.67% 22.26% 19.83%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.73% 13.95% 13.43% 12.40% 11.74%
p(RL ≥ ARL+ 0.5 × SDRL) 22.36% 22.70% 21.02% 20.59% 21.41%

1.5 ARL 12.4925 139.7600 200.8180 256.4210 277.4820
SDRL 10.7629 139.6988 255.7863 344.0812 393.9189
p(RL<ARL� 0.5 × SDRL) 36.86% 39.23% 42.57% 44.22% 45.24%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 25.79% 24.36% 21.37% 21.20% 21.57%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.95% 13.51% 13.86% 13.73% 12.93%
p(RL ≥ ARL+ 0.5 × SDRL) 22.40% 22.90% 22.20% 20.85% 20.26%

1.75 ARL 8.0350 102.3600 162.0800 217.0740 248.2665
SDRL 6.9166 106.2542 216.0504 300.1526 358.3649
p(RL<ARL� 0.5 × SDRL) 38.59% 39.77% 42.17% 43.95% 46.40%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.45% 22.50% 21.91% 22.00% 20.40%
p(ARL ≤ RL< ARL+0.5 × SDRL) 12.26% 15.95% 15.02% 12.72% 12.35%
p(RL ≥ ARL+ 0.5 × SDRL) 22.77% 21.78% 20.90% 21.33% 20.85%

2 ARL 5.6635 75.0010 134.6650 180.2250 228.3665
SDRL 4.7517 74.7526 171.6041 256.1712 328.3209
p(RL<ARL� 0.5 × SDRL) 40.31% 38.97% 41.99% 45.24% 47.20%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 19.63% 24.62% 23.67% 20.22% 19.37%
p(ARL ≤ RL< ARL+0.5 × SDRL) 19.02% 14.10% 12.74% 13.65% 11.28%
p(RL ≥ ARL+ 0.5 × SDRL) 21.04% 22.31% 21.60% 20.89% 22.15%

2.5 ARL 3.8330 41.5255 83.3175 124.7760 172.1530
SDRL 3.0389 43.6927 108.9257 166.2782 251.2772
p(rl<ARL� 0.5 × SDRL) 42.86% 39.15% 42.72% 45.07% 46.44%
p(ARL� 0.5 × SDRL ≤ rl< ARL) 14.73% 23.37% 21.77% 21.46% 19.51%
p(ARL ≤ rl<ARL+ 0.5 × SDRL) 20.22% 15.22% 13.91% 12.01% 12.80%
p(rl ≥ARL+0.5 × SDRL) 22.19% 22.26% 21.60% 21.46% 21.25%

ARL, average run length; SDRL, standard deviation of run length.
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Incorporating the measurement error with linearly increasing variance, we rewrite the EWMA statistic for sample t; t=1, 2,… in
Equation (1) as follows:

Zt ¼ λYt þ 1� λð ÞZt�1; (12)

where Yt is the mean of observed Ys over the tth sample size of n and Z0 = A+ Bμ0. It can be statistically proved that Zt follows a normal
distribution with the following parameters:

N Aþ Bμ0;
λ

n 2� λð Þ
� �

1� 1� λð Þ2t
h i

� B2σ20 þ C þ Dμ0

� � �
: (13)

Consequently, the extended Ut statistic for monitoring the process mean in the presence of measurement error with linearly
increasing-type variance follows a standard normal distribution as follows:

U′
t ¼

Zt � Aþ Bμ0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2�λð Þ 1� 1� λð Þ2t
h i

� B2σ20þCþDμ0

n

r : (14)
Table VI. Distribution of run lengths in detecting simultaneous shifts for different values of C when D=1 and δ= 0.5

hm 3.0799 3.1137 3.1509 3.1686 3.1793

ψ No error 0 1 2 3

1.1 ARL 36.1595 216.2660 228.5460 245.0075 251.5956
SDRL 32.7293 229.0723 271.7987 288.5407 305.1125
p(RL<ARL� 0.5 × SDRL) 39.54% 39.36% 39.30% 40.41% 42.13%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 22.36% 23.86% 25.06% 23.64% 22.62%
p(ARL ≤ RL< ARL+0.5 × SDRL) 15.23% 14.27% 14.31% 15.42% 14.08%
p(RL ≥ ARL+ 0.5 × SDRL) 22.87% 22.51% 21.33% 20.53% 21.17%

1.25 ARL 22.6325 184.6195 196.9090 207.9535 210.2105
SDRL 20.4230 203.2850 226.3482 251.7451 269.1652
p(RL<ARL� 0.5 × SDRL) 36.86% 39.31% 38.98% 41.46% 40.88%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.05% 24.04% 25.06% 21.82% 23.93%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.73% 13.95% 13.65% 14.35% 13.37%
p(RL ≥ ARL+ 0.5 × SDRL) 22.36% 22.70% 22.31% 22.37% 21.82%

1.5 ARL 12.4925 139.7600 151.0165 159.3100 172.2805
SDRL 10.7629 139.6988 168.4158 187.6774 197.1766
p(RL<ARL� 0.5 × SDRL) 36.86% 39.23% 39.86% 41.77% 41.42%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 25.79% 24.36% 23.11% 21.38% 22.46%
p(ARL ≤ RL< ARL+0.5 × SDRL) 14.95% 13.51% 14.35% 15.24% 13.95%
p(RL ≥ ARL+ 0.5 × SDRL) 22.40% 22.90% 22.68% 21.61% 22.17%

1.75 ARL 8.0350 102.3600 116.6915 120.7680 131.6855
SDRL 6.9166 106.2542 128.1981 140.1855 161.8334
p(RL<ARL� 0.5 × SDRL) 38.59% 39.77% 39.73% 40.00% 40.04%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.45% 22.50% 23.42% 23.95% 25.15%
p(ARL ≤ RL< ARL+0.5 × SDRL) 12.26% 15.95% 14.84% 13.03% 14.24%
p(RL ≥ ARL+ 0.5 × SDRL) 22.77% 21.78% 22.01% 23.02% 20.57%

2 ARL 5.6635 75.0010 84.4425 89.3390 96.7955
SDRL 4.7517 74.7526 91.4282 104.8821 114.0955
p(RL<ARL� 0.5 × SDRL) 40.31% 38.97% 39.15% 40.88% 41.24%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 19.63% 24.62% 24.04% 23.15% 22.48%
p(ARL ≤ RL< ARL+0.5 × SDRL) 19.02% 14.10% 14.90% 13.46% 13.33%
p(RL ≥ ARL+ 0.5 × SDRL) 21.04% 22.31% 21.91% 22.51% 22.95%

2.5 ARL 3.8330 41.5255 45.5920 53.0815 56.1230
SDRL 3.0389 43.6927 51.5382 58.3925 70.5022
p(RL<ARL� 0.5 × SDRL) 42.86% 39.15% 39.61% 40.22% 39.91%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 14.73% 23.37% 24.00% 24.17% 24.40%
p(ARL ≤ RL< ARL+0.5 × SDRL) 20.22% 15.22% 14.84% 13.91% 14.85%
p(RL ≥ ARL+ 0.5 × SDRL) 22.19% 22.26% 21.55% 21.70% 20.84%

ARL, average run length; SDRL, standard deviation of run length.
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The extended Vt statistic for monitoring the process variability in the presence of measurement error with linearly increasing-type
variance with approximate standard normal distribution can be rewritten as follows:

V ′
t ¼ ϕ�1 H

νS2t
σ2y

; ν

( )" #
; (15)

where σ2y ¼ B2σ20 þ C þ Dμ0, ν ¼ n 2�λð Þ
λ , and H a; df g ¼ pr χ2d≤a


 �
are the cumulative distribution function of a chi-square distribution. The

MAX-EWMAMS statistic for simultaneous monitoring of the process mean and variability in the presence of measurement error with linearly
increasing variance at sample point t; t=1, 2,… is defined as follows:

M′
t ¼ max U′

t ;j jV ′
t

�� ��
 �
: (16)

It is obvious in Equation (16) that large values ofM′
t can cause out-of-control signals. Statistically approximating the distribution of

M′
t is not easily possible. In this paper, the upper control limit of the proposed control chart is estimated through the simulation

experiments so that the in-control ARL (ARL0) be equal to a predetermined value.
Table VII. Distribution of run lengths in detecting simultaneous shifts for different values of D when C=0 and δ=1

hm 3.0799 3.1137 3.2110 3.2451 3.2509

ψ 0 1 2 3 5

1.1 ARL 10.3545 105.2530 160.3300 213.0145 241.1145
SDRL 7.9440 106.8790 215.9459 300.1392 365.3734
p(RL<ARL� 0.5 × SDRL) 38.32% 39.66% 42.57% 44.77% 46.13%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.38% 23.74% 22.45% 20.71% 19.82%
p(ARL ≤ RL< ARL+0.5 × SDRL) 12.48% 13.95% 13.75% 13.66% 12.30%
p(RL ≥ ARL+ 0.5 × SDRL) 24.82% 22.65% 21.23% 20.86% 21.75%

1.25 ARL 8.7675 87.2175 146.3890 180.8515 230.5500
SDRL 7.0110 91.6396 196.9995 261.6435 342.0095
p(RL<ARL� 0.5 × SDRL) 38.16% 39.77% 43.19% 44.72% 45.82%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 20.99% 24.05% 21.82% 21.02% 20.39%
p(ARL ≤ RL< ARL+0.5 × SDRL) 18.77% 14.12% 13.01% 13.17% 12.95%
p(RL ≥ ARL+ 0.5 × SDRL) 22.08% 22.06% 21.98% 21.09% 20.84%

1.5 ARL 6.9320 77.6950 129.8170 171.3990 209.2105
SDRL 5.2047 72.9625 162.3571 236.7214 302.9830
p(RL<ARL� 0.5 × SDRL) 40.84% 39.54% 43.06% 44.43% 46.55%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 23.19% 23.57% 22.56% 21.35% 19.42%
p(ARL ≤ RL< ARL+0.5 × SDRL) 10.37% 14.88% 12.92% 12.59% 12.67%
p(RL ≥ ARL+ 0.5 × SDRL) 25.60% 22.01% 21.46% 21.63% 21.36%

1.75 ARL 5.7970 59.4345 106.6280 151.9065 195.2725
SDRL 4.6852 62.0857 147.8613 210.4807 299.6907
p(RL<ARL� 0.5 × SDRL) 39.29% 38.84% 42.90% 44.48% 46.23%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 21.11% 24.34% 22.42% 21.03% 20.03%
p(ARL ≤ RL< ARL+0.5 × SDRL) 19.21% 14.49% 12.76% 13.31% 12.53%
p(RL ≥ ARL+ 0.5 × SDRL) 20.39% 22.33% 21.92% 21.18% 21.21%

2 ARL 4.6315 49.0485 88.8490 130.8295 175.5850
SDRL 3.6144 48.4471 119.6174 169.1622 266.9163
p(rl<ARL� 0.5 × SDRL) 34.03% 38.58% 42.79% 44.28% 46.15%
p(ARL� 0.5 × SDRL ≤ rl< ARL) 26.35% 24.26% 21.97% 21.10% 19.66%
p(ARL ≤ rl<ARL+ 0.5 × SDRL) 16.18% 14.99% 13.33% 13.19% 12.36%
p(rl ≥ARL+0.5 × SDRL) 23.44% 22.17% 21.91% 21.43% 21.83%

2.5 ARL 3.4635 31.9420 64.6910 93.8795 143.9715
SDRL 2.6931 30.8603 77.8544 131.2938 203.6150
p(RL<ARL� 0.5 × SDRL) 46.86% 39.49% 42.75% 43.88% 45.12%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 16.38% 23.62% 21.82% 21.34% 20.82%
p(ARL ≤ RL< ARL+0.5 × SDRL) 11.64% 14.41% 13.28% 13.12% 12.83%
p(RL ≥ ARL+ 0.5 × SDRL) 25.12% 22.48% 22.15% 21.66% 21.23%

ARL, average run length; SDRL, standard deviation of run length.

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1693–1705

1
7
0
1



A. K. DIZALBADI, M. SHAHROKHI AND M. R. MALEKI

1
7
0
2

4. Performance evaluation

In this section, the performance of the MAX-EWMAMS control chart in the presence of measurement error with linearly increasing-
type variance is investigated through a detailed numerical example based on simulation. All simulation experiments in this section
are conducted in MATLAB computer software (MathWorks, Natick, MA, USA). It has been assumed that when the process is in-control,
X follows a normal distribution with parameters μ0 = 8 and σ20 ¼ 1. Here, we select n=1,A= 0, B=1, and λ= 0.25. For each variance
value of error term, we set the control limit of the MAX-EWMAMS control chart so that the ARL0 value is matched roughly equal to
370. Then, in each column (for each variance value of error term) based on 10,000 replicates, we simulate the performance of the
proposed control chart in detecting different step shifts under different out-of-control scenarios. Note that in out-of-control scenarios,
the step shifts μ1 =μ0 + δσ0 and σ1 =ψσ0 are considered for mean and variance shifts, respectively. The performance of MAX-EWMAMS
control chart in the presence of measurement error in detecting mean and variance shifts is displayed in Tables 1, 2 and Tables 3, 4,
respectively. The results of detecting simultaneous shifts in both process mean and variability are also summarized in Tables 5–10.
Recall that in all simulation experiments, three criteria including ARL, SDRLs, and empirical distribution of run lengths are calculated
for different covariate model parameters.

4.1. Investigating mean shifts

In Table I, the results of the proposed MAX-EWMAMS control chart in detecting different mean shifts when D= 0, 1, 2, 3, 4, 5 and C=0
are summarized. The results of Table I show that even small values of parameter D can seriously decrease the ability of MAX-EWMAMS
Table VIII. Distribution of run lengths in detecting simultaneous shifts for different values of C when D= 1 and δ=1

hm 3.0799 3.1137 3.1509 3.1686 3.1793

ψ No error 0 1 2 3

1.1 ARL 10.3545 105.2530 111.4420 124.0515 126.6040
SDRL 7.9440 106.8790 128.9749 141.9220 157.8290
p(RL<ARL� 0.5 × SDRL) 38.32% 39.66% 39.76% 40.30% 41.29%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.38% 23.74% 24.46% 23.21% 22.75%
p(ARL ≤ RL< ARL+0.5 × SDRL) 12.48% 13.95% 13.66% 14.55% 13.70%
p(RL ≥ ARL+ 0.5 × SDRL) 24.82% 22.65% 22.12% 21.94% 22.26%

1.25 ARL 8.7675 87.2175 100.3315 110.0360 112.9360
SDRL 7.0110 91.6396 115.9057 130.8012 135.3714
p(RL<ARL� 0.5 × SDRL) 38.16% 39.77% 40.33% 40.29% 41.48%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 20.99% 24.05% 23.04% 23.34% 22.65%
p(ARL ≤ RL< ARL+0.5 × SDRL) 18.77% 14.12% 14.40% 14.70% 13.67%
p(RL ≥ ARL+ 0.5 × SDRL) 22.08% 22.06% 22.23% 21.67% 22.20%

1.5 ARL 6.9320 77.6950 82.9080 87.8540 98.9620
SDRL 5.2047 72.9625 88.1170 105.5142 123.3881
p(RL<ARL� 0.5 × SDRL) 40.84% 39.54% 39.66% 40.56% 40.74%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 23.19% 23.57% 23.84% 23.35% 23.82%
p(ARL ≤ RL< ARL+0.5 × SDRL) 10.37% 14.88% 14.18% 13.91% 13.47%
p(RL ≥ ARL+ 0.5 × SDRL) 25.60% 22.01% 22.32% 22.18% 21.97%

1.75 ARL 5.7970 59.4345 66.6305 76.7735 82.3265
SDRL 4.6852 62.0857 75.1415 87.8164 94.6538
p(RL<ARL� 0.5 × SDRL) 39.29% 38.84% 38.87% 40.19% 41.10%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 21.11% 24.34% 24.66% 23.74% 22.54%
p(ARL ≤ RL< ARL+0.5 × SDRL) 19.21% 14.49% 14.46% 14.18% 13.87%
p(RL ≥ ARL+ 0.5 × SDRL) 20.39% 22.33% 22.01% 21.89% 22.49%

2 ARL 4.6315 49.0485 52.5620 60.9250 63.7335
SDRL 3.6144 48.4471 57.1972 66.7716 75.7590
p(RL<ARL� 0.5 × SDRL) 34.03% 38.58% 38.84% 39.86% 41.20%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.35% 24.26% 25.17% 23.71% 22.07%
p(ARL ≤ RL< ARL+0.5 × SDRL) 16.18% 14.99% 14.14% 14.34% 14.53%
p(RL ≥ ARL+ 0.5 × SDRL) 23.44% 22.17% 21.85% 22.09% 22.20%

2.5 ARL 3.4635 31.9420 34.3680 41.0175 41.9530
SDRL 2.6931 30.8603 36.5830 46.1803 48.5160
p(RL<ARL� 0.5 × SDRL) 46.86% 39.49% 39.18% 39.69% 40.15%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 16.38% 23.62% 24.63% 23.72% 22.94%
p(ARL ≤ RL< ARL+0.5 × SDRL) 11.64% 14.41% 14.14% 14.21% 14.85%
p(RL ≥ ARL+ 0.5 × SDRL) 25.12% 22.48% 22.05% 22.38% 22.06%

ARL, average run length; SDRL, standard deviation of run length.
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Table IX. Distribution of run lengths in detecting simultaneous shifts for different values of D when C= 0 and δ= 2

hm 3.0799 3.1137 3.2110 3.2451 3.2509

ψ 0 1 2 3 5

1.1 ARL 3.0805 26.0945 47.7130 77.2270 113.0885
SDRL 1.6964 23.4642 62.5016 102.2316 162.4089
p(RL<ARL� 0.5 × SDRL) 43.86% 39.35% 42.00% 43.88% 45.87%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 24.08% 23.68% 23.05% 20.93% 20.30%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 0% 14.37% 13.17% 14.12% 12.26%
p(RL ≥ARL+ 0.5 × SDRL) 32.06% 22.60% 21.78% 21.07% 21.57%

1.25 ARL 3.0660 25.0530 45.9900 73.1585 109.1200
SDRL 1.7913 23.1117 59.2542 96.8187 158.4487
p(RL<ARL� 0.5 × SDRL) 47.74% 38.27% 41.79% 43.84% 45.97%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 0% 25.23% 22.54% 21.12% 19.65%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 20.61% 13.77% 13.40% 13.41% 12.83%
p(RL ≥ARL+ 0.5 × SDRL) 31.65% 22.73% 22.27% 21.63% 21.55%

1.5 ARL 2.9855 22.6280 44.1895 65.0525 102.9785
SDRL 1.9268 20.9672 54.3381 90.6307 147.7314
p(RL<ARL� 0.5 × SDRL) 49.47% 37.92% 41.55% 42.70% 45.70%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 0% 25.37% 22.13% 22.57% 19.99%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 19.64% 14.09% 14.14% 13.80% 12.93%
p(RL ≥ARL+ 0.5 × SDRL) 30.89% 22.62% 22.18% 20.93% 21.34%

1.75 ARL 2.8675 21.6215 41.4495 62.6400 96.9205
SDRL 1.9585 19.7591 47.2296 81.4611 138.2698
p(RL<ARL� 0.5 × SDRL) 27.17% 37.74% 41.05% 42.66% 45.16%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 25.44% 25.20% 22.57% 22.45% 20.03%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 17.77% 14.94% 14.29% 13.41% 13.05%
p(RL ≥ARL+ 0.5 × SDRL) 29.62% 22.12% 22.09% 21.48% 21.76%

2 ARL 2.7835 18.9840 37.5205 57.5085 91.9145
SDRL 1.9871 18.2040 42.5330 75.4716 126.2704
p(RL<ARL� 0.5 × SDRL) 29.67% 37.20% 41.29% 43.43% 45.37%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 25.98% 25.25% 22.81% 21.28% 20.41%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 17.54% 15.09% 13.36% 13.77% 12.37%
p(RL ≥ARL+ 0.5 × SDRL) 26.81% 22.46% 22.54% 21.52% 21.85%

2.5 ARL 2.4965 16.5355 29.5760 46.0600 78.8660
SDRL 1.7984 14.4771 35.6754 63.5406 108.0081
p(RL<ARL� 0.5 × SDRL) 34.73% 36.90% 40.87% 42.48% 44.86%
p(ARL� 0.5 × SDRL ≤ RL<ARL) 26.56% 25.00% 22.92% 22.53% 21.15%
p(ARL ≤ RL< ARL+ 0.5 × SDRL) 16.58% 16.61% 13.98% 13.43% 12.31%
p(RL ≥ARL+ 0.5 × SDRL) 22.13% 21.47% 22.23% 21.56% 21.68%

ARL, average run length; SDRL, standard deviation of run length.
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control chart in detecting mean shifts in terms of both accuracy and precision criteria. It is also concluded that the ability of MAX-
EWMAMS control chart in detecting mean shifts improves as the value of parameter D increases.

Table II shows the performance of the MAX-EWMAMS control chart in detecting mean shifts for different values of parameter C
when D is fixed equal to 1. We can see in Table II that increasing the value of parameter C increases undesirable effect of
measurement error on both ARL and SDRL values. However, the effect of parameter C on ability of control chart in detecting mean
shifts is less than D.
1
7
0
3

4.2. Investigating variance shifts

In Table III, the capability of MAX-EWMAMS control chart in detecting variance shifts in the presence of measurement error with
linearly increasing-type variance when D=0, 1, 2, 3, 4, 5 and C=0 is investigated. It is clear that for all out-of-control scenarios
considered in Table III, increasing the parameter D can adversely affect the ability of the control chart in detecting different variance
shifts. It is also seen that both ARLs and SDRLs tend to decrease as the magnitude of variance shifts (ψ) increases.

The simulated ARLs, SDRLs, and empirical distribution of run lengths for different values of parameter C when D= 1 are given in
Table IV. Table IV shows that under different variance shifts; increasing the parameter C can affect adversely the detecting capability
of MAX-EWMAMS control chart.
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Table X. Distribution of run lengths in detecting simultaneous shifts for different values of C when D= 1 and δ= 2

hm 3.0799 3.1137 3.1509 3.1686 3.1793

ψ No error 0 1 2 3

1.1 ARL 3.0805 26.0945 28.9770 33.8875 34.7030
SDRL 1.6964 23.4642 29.0177 32.4754 36.3658
p(RL<ARL� 0.5 × SDRL) 43.86% 39.35% 39.07% 38.80% 39.58%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 24.08% 23.68% 23.28% 24.55% 23.31%
p(ARL ≤ RL< ARL+0.5 × SDRL) 0% 14.37% 15.02% 14.34% 14.35%
p(RL ≥ ARL+ 0.5 × SDRL) 32.06% 22.60% 22.63% 22.31% 22.76%

1.25 ARL 3.0660 25.0530 27.2285 31.7090 32.3590
SDRL 1.7913 23.1117 28.9717 32.7581 36.1652
p(RL<ARL� 0.5 × SDRL) 47.74% 38.27% 37.53% 39.59% 38.82%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 0% 25.23% 25.14% 23.39% 25.03%
p(ARL ≤ RL< ARL+0.5 × SDRL) 20.61% 13.77% 14.62% 14.21% 14.03%
p(RL ≥ ARL+ 0.5 × SDRL) 31.65% 22.73% 22.71% 22.81% 22.12%

1.5 ARL 2.9855 22.6280 26.2580 27.8820 30.3835
SDRL 1.9268 20.9672 25.5934 30.0245 34.4406
p(RL<ARL� 0.5 × SDRL) 49.47% 37.92% 37.76% 39.58% 38.84%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 0% 25.37% 24.88% 23.69% 24.98%
p(ARL ≤ RL< ARL+0.5 × SDRL) 19.64% 14.09% 14.37% 13.55% 14.20%
p(RL ≥ ARL+ 0.5 × SDRL) 30.89% 22.62% 22.99% 22.91% 21.98%

1.75 ARL 2.8675 21.6215 22.9465 25.2325 28.5005
SDRL 1.9585 19.7591 23.4923 26.9386 30.3158
p(RL<ARL� 0.5 × SDRL) 27.17% 37.74% 37.34% 38.32% 39.45%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 25.44% 25.20% 25.59% 24.75% 23.71%
p(ARL ≤ RL< ARL+0.5 × SDRL) 17.77% 14.94% 14.80% 14.62% 15.11%
p(RL ≥ ARL+ 0.5 × SDRL) 29.62% 22.12% 22.27% 22.31% 21.73%

2 ARL 2.7835 18.9840 21.3470 22.7105 24.9060
SDRL 1.9871 18.2040 20.9696 25.8067 29.3176
p(RL<ARL� 0.5 × SDRL) 29.67% 37.20% 36.96% 39.87% 41.07%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 25.98% 25.25% 25.50% 23.45% 21.40%
p(ARL ≤ RL< ARL+0.5 × SDRL) 17.54% 15.09% 15.24% 14.10% 14.90%
p(RL ≥ ARL+ 0.5 × SDRL) 26.81% 22.46% 22.30% 22.58% 22.63%

2.5 ARL 2.4965 16.5355 17.8860 18.7690 21.2555
SDRL 1.7984 14.4771 16.7226 19.0667 21.7477
p(RL< ARL� 0.5 × SDRL) 34.73% 36.90% 39.79% 40.08% 38.25%
p(ARL� 0.5 × SDRL ≤ RL< ARL) 26.56% 25.00% 22.40% 21.85% 25.66%
p(ARL ≤ RL< ARL+0.5 × SDRL) 16.58% 16.61% 14.33% 15.06% 13.87%
p(RL ≥ ARL+ 0.5 × SDRL) 22.13% 21.47% 23.48% 23.01% 22.22%

ARL, average run length; SDRL, standard deviation of run length.
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4.3. Investigating simultaneous shifts

In Tables 5–10, the ability of MAX-EWMAMS in the presence of measurement error with linearly increasing-type variance is
investigated. Generally, it is observed that in comparison with separate mean and variance shifts, the control chart has better
performance in detecting simultaneous shifts in both process mean and variance in terms of both accuracy and precision criteria.
Similar to Tables 1–4, the results of Tables 5–10 show that increasing both parameters D and C leads to an undesirable effect on
the ability of MAX-EWMAMS control chart in detecting out-of-control shifts. It is also concluded from Tables 5–10 that the effect of
parameter C on ability of control chart in detecting simultaneous shifts in both process mean and variance is less than parameter
D. In order to investigate the effect of measurement error on the ability of control chart in detecting simultaneous shifts, we fix
the magnitude of mean shift (δ) and compute the run length properties under different magnitudes of variance shifts (ψ).

Tables V and VI show the effect of parameters D and C, respectively, on the ability of MAX-EWMAMS control chart in detecting
simultaneous mean and variance shifts when δ= 0.5. In Table V, the parameter C is fixed to 0, whereas in Table VI, the parameter D
is fixed to 1.

The effect of parameters D and C on the ability of MAX-EWMAMS control chart in detecting simultaneous mean and variance shifts when
δ=1 is investigated in Tables VII and VIII, respectively. In Table VII, parameter C is fixed to 0, and in Table VIII, parameter D is fixed to 1.

The effect of parameters D and C on the ability of MAX-EWMAMS control chart in detecting simultaneous mean and variance
shifts when δ=2 is investigated in Tables IX and X, respectively. In Table IX, parameter C is fixed to 0, and in Table X, parameter D
is fixed to 1.
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5. Conclusion

In this paper, we incorporated the measurement error in simultaneous monitoring of process mean and variability. We studied the
capability of MAX-EWMAMS control chart in detecting mean shifts, variance shifts, and simultaneous shifts in both under linearly
increasing error variance. We utilized a numerical example based on simulation and investigated the effect of measurement error with
linearly increasing-type variance on MAX-EWMAMS control chart. We found that measurement error with linearly increasing-type
variance can seriously decrease the ability of MAX-EWMAMS control chart in detecting different out-of-control scenarios. Investigating
the effects of measurement error on artificial neural network-based control schemes can be considered as a future study.
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